Preface

Thank you for choosing SINEE's EM730 series inverter.

Document No.: 31010214 Release time: July 2022 Version: 102

The EM730 inverter is a high-reliable and small-sized universal inverter launched by SINEE. EM730 supports three-phase AC asynchronous motors. EM730 Permanent magnet synchronous Non-standard supports permanent magnet synchronous motors. They support a variety of drive control technologies, such as the vector VF (VVF) control and speed sensorless vector control (SVC); speed output and torque output; and Wi-Fi access and background software debugging.

Features of the EM730 series inverter:

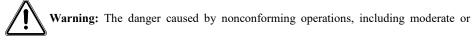
- Support debugging by the mobile phone APP or monitoring of the inverter status;
- Support Wi-Fi module or serial port access;
- Rich and convenient PC background software functions;
- No need for derating at the ambient temperature of 50 $^{\circ}$ C;
- Support "one-key shuttle" for fast and accurate speed adjustment;
- Perfect protections: Protections against the short circuit, overcurrent, overvoltage, overload, overheating, etc.

Before using the EM730 series inverter, please read this manual carefully and keep it properly.

While connecting the inverter to motor for the first time, please select the motor type (asynchronous or synchronous) correctly and set the motor nameplate parameters: rated power, rated voltage, rated current, rated frequency, rated speed, motor connection, rated power factor, etc.

Since we are committed to continuously improving our products and product data, the data provided by us may be modified without prior notice.

For the latest changes and contents, please visit www.sinee.cn.


Safety precautions

Safety definition: Safety precautions are divided into the following two categories in this manual:

Danger: The dangers caused by nonconforming operations may include serious injuries

and even deaths.

minor injuries and equipment damage.

During the installation, commissioning and maintenance, please read this chapter carefully, and follow the safety precautions herein. Our company will not be liable for any injury or loss arising from nonconforming operations.

Precautions

Before installation:

Danger

- 1. Do not install the product in the case of water in the package or missing or damaged components found in unpacking!
- 2. Do not install the product in the case of inconsistency between the actual product name and identification on the outer package.

Warning

- 1. Handle the controller with care; otherwise, it may be damaged!
- 2. Never use the inverter damaged or with some parts missing; otherwise, injuries may be caused!
- 3. Do not touch the components of the control system with your hands; otherwise, there is a danger of static damage!

During installation:

Please install the inverter on a metal retardant object (e.g. metal) and keep it away

- from combustibles; otherwise, a fire may be caused!
- 2. Do not loosen the fixing bolts of components, especially those with red marks!

Warning

- 1. Never make wire connectors or screws fall into the inverter; otherwise, the inverter may be damaged!
- 2. Install the inverter in a place with little vibration and exposure to direct sunlight.
- 3. When the inverter is installed a relatively closed cabinet or space, pay attention to the installation gap to ensure the effects of heat dissipation.

During wiring:

- 1. Follow the instructions in this manual, and appoint professional and electrical engineering personnel to complete wiring; otherwise, unexpected dangers may be caused!
- 2. The inverter and power supply must be separated by a circuit breaker (recommendation: greater than or equal to and closest to twice the rated current); otherwise, a fire may be caused!
- 3. Before wiring, make sure that the power supply is in the zero energy status; otherwise, electric shock may be caused!
- 4. Never connect the input power supply to the output terminals (U, V, W) of the inverter. Pay attention to the marks of wiring terminals, and connect wires correctly! Otherwise, the inverter may be damaged!
- 5. Make the inverter grounded correctly and reliably according to the standards; otherwise, electric shock and fire may be caused!

Warning

- 1. Make sure that the lines meet the EMC requirements and local safety standards. For wire diameters, refer to the recommendations. Otherwise, an accident may occur!
- 2. Never connect the braking resistor directly between the DC bus+ and terminal. Otherwise, a fire may be caused!
- 3. Tighten the terminals with a screwdriver of specified torque; otherwise, there is a risk of fire.
- 4. Never connect the phase-shifting capacitor and LC/RC noise filter to the output circuit.
- 5. Do not connect the electromagnetic switch and electromagnetic contactor to the output circuit. Otherwise, the overcurrent protection circuit of the inverter will be enabled. In severe cases, the inverter may be subject to internal damage.
- 6. Do not dismantle the connecting cable inside the inverter; otherwise, internal damage may be caused to the inverter.

Before power-on:

- Make sure that the voltage level of the input power supply is consistent with the rated voltage of the inverter; and the input terminals (R, S, T) and output terminals (U, V, W) of the power supply are connected correctly. Check whether there is short circuit in the peripheral circuits connected to the inverter and whether all connecting lines are tightened; otherwise, the inverter may be damaged!
- The withstand voltage test has been performed to all parts of the inverter, so it is not necessary to carry it out again. Otherwise, an accident may be caused!

Warning

- 1. The inverter must not be powered on until it is properly covered; otherwise, electric shock may be caused!
- 2. The wiring of all peripheral accessories must be in line with the instructions in this manual. All wires should be connected correctly according to the circuit connections in this manual. Otherwise, an accident may occur!

After power-on:

ADanger

- 1. Never touch the inverter and surrounding circuits with wet hands; otherwise, electric shock may occur!
- 2. If the indicator is not ON and the keyboard has no response after power-on, immediately turn off the power supply. Never touch the inverter terminals (R, S, T) and the terminals on the terminal block with your hands or screwdriver; otherwise, electric shock may be caused. Upon turning off the power supply, contact our customer service personnel.
- 3. At the beginning of power-on, the inverter automatically performs a safety test to external strong current circuits. Do not touch the inverter terminals (U, V, W) or motor terminals; otherwise, electric shock may be caused!
- 4. Do not disassemble any parts of the inverter while it is powered on.

Warning

- 1. When parameter identification is required, please pay attention to the danger of injury during motor rotation; otherwise, an accident may occur!
- 2. Do not change the parameters set by the inverter manufacturer without permission; otherwise, the inverter may be damaged!

During operation:

- 1. Do not touch the cooling fan, radiator and discharge resistor to feel the temperature; otherwise, burns may be caused!
- 2. Non-professional technicians must not test signals when the controller is in operation; otherwise, personal injury or equipment damage may be caused!

Marning

- Prevent any object from falling into the inverter in operation; otherwise, the inverter may be damaged!
- 2. Do not start or stop the inverter by turning on or off the contactor; otherwise, the inverter may be damaged!

During maintenance:

ADanger

- 1. Never carry out repair and maintenance in the live state; otherwise, electric shock may be caused!
- 2. Maintenance of the inverter must be carried out 10 min after the main circuit is powered off and the display interface of the keyboard is disabled; otherwise, the residual charge in the capacitor will do harm to the human body!
- 3. Personnel without professional training are not allowed to repair and maintain the inverter; otherwise, personal injury or inverter damage may be caused!
- 4. The parameters must be set after the inverter is replaced. Plugs in all interfaces must be operated in the power-off status!
- 5. The synchronous motor generates electricity while rotating. Inverter maintenance and repair must be performed 10 min after the power supply is turned off and the motor stops running; otherwise, electric shock may be caused!

Cautions

Motor insulation inspection

When the motor is used for the first time or after long-term storage or subject to regular inspection, its insulation should be checked to prevent the inverter from damage caused by failure of the motor winding insulation. During the insulation inspection, the motor must be disconnected from the inverter. It is recommended to use a 500V megohmmeter. The measured insulation resistance must not be less than 5 M Ω .

Thermal protection of motor

If the motor used does not match the rated capacity of the inverter, especially when the rated power of the inverter is greater than that of the motor, the motor must be protected by adjusting the motor protection parameters of the inverter or installing a thermal relay in front of the motor.

Operation above power frequency

This inverter can provide the output frequency of 0.00Hz to 600.00Hz/0.0Hz to 3000.0Hz. When the motor needs to operate above the rated frequency, please consider the capacity of the mechanical device.

About motor heat and noise

Since the inverter outputs PWM waves, containing some harmonics, the temperature rise, noise and vibration of the motor will be slightly more than those in operation at the power frequency.

Presence of voltage-dependent device or capacitor increasing the power factor on output side

The inverter outputs PWM waves. If there is a capacitor increasing the power factor or voltage-dependent resistor for lightning protection on the output side, the inverter may be subjected to instantaneous overcurrent and even damage. Do not use these devices.

Use beyond rated voltage

The EM730 series open-loop vector inverter should not be used beyond the allowable working voltage range specified in this manual; otherwise, the components inside the inverter are prone to damage. If necessary, use the appropriate step-up or step-down device for voltage transformation.

Lightning impulse protection

The inverter of this series is equipped with a lightning overcurrent protector, which has certain capabilities in self-protection against induced lightning. Where lightning strikes occur frequently, a protective device should be added in front of the inverter.

Altitude and derating

In areas with an altitude of more than 1,000 m, where heat dissipation of the inverter is poor due to thin air, derating is required (derating by 1% per 100 m altitude increase to maximum 3,000 m; for ambient temperature above 50 °C , derating by 1.5% per 1 °C temperature rise to maximum 60 °C). Contact us for technical advice.

Precautions for scrapping of inverter

Burning of the electrolytic capacitors of the main circuit and printed circuit board may result in explosion, and burning of plastic parts may generate toxic gases. Please dispose of the controller as a kind of industrial waste.

Contents

PREFACE	1
SAFETY PRECAUTIONS	2
PRECAUTIONS	2
CAUTIONS	5
CHAPTER 1 OVERVIEW	9
1.1 MODEL AND SPECIFICATION OF EM730 SERIES INVERTER	9
1.2 DETAILED INTRODUCTION TO RUNNING STATUS OF EM730 SERIES INVERTER	13
CHAPTER 2 INSTALLATION	18
2.1 Product check	
2.2 OUTLINE DIMENSIONS AND INSTALLATION DIMENSIONS	19
2.3 INSTALLATION SITE REQUIREMENTS AND MANAGEMENT	
2.4 INSTALLATION DIRECTION AND SPACE	26
CHAPTER 3 WIRING	27
3.1 CONNECTION OF PERIPHERAL DEVICE	27
3.2 Wiring of Main Circuit Terminal	
3.3 WIRING OF CONTROL CIRCUIT TERMINAL	41
3.4 Extension wirin	50
3.5 g of keyboard	
3.6 CONNECTION TEST	50
CHAPTER 4 KEYBOARD OPERATIONS	51
4.1 Keyboard Functions	51
4.2 OPERATION MODE OF KEYBOARD WITH DIGITAL TUBE DISPLAY	52
4.3 Protection Monitoring	57
4.4 OPERATION MONITORING	57
4.5 RUN/STOP	58
4.6 OTHER WARNING PROMPTS	59

60
60
61
61
61
62
65
66
68
68
70

Chapter 1 Overview

1.1 Model and Specification of EM730 Series Inverter

• Rated voltage of power supply:

Three-phase AC 340~460V, three-phase/single-phase AC 200V~240V;

• Applicable motor: Three-phase AC asynchronous motor (EM730) and permanent magnet synchronous motor (Permanent magnet Non-standard).

The model and rated output current of EM730 series inverter are as shown in Table 1-1.

Rated voltage of	Model	Applicable	Heavy-duty	Light-duty rated output
power supply	WIGHEI	motor power (kW)	rated output current (A)	current (A)
0.1.1.41	EM730-0R4-2B	0.4	2.8	3.2
Single-phase/three-	EM730-0R7-2B	0.75	4.8	5.0
phase AC 200V~240V	EM730-1R5-2B	1.5	8	8.5
200 1 240 1	EM730-2R2-2B	2.2	10	11.5
	EM730-0R7-3B	0.75	2.5	3
	EM730-1R5-3B	1.5	4.2	4.6
	EM730-2R2-3B	2.2	5.6	6.5
	EM730-4R0-3B	4.0	9.4	10.5
	EM730-5R5-3B	5.5	13	15.7
	EM730-7R5-3B	7.5	17	20.5
	EM730-011-3B	11	25	28
	EM730-015-3B	15	32	36
	EM730-018-3B	18.5	38	41.5
Three-phase AC	EM730-022-3B	22	45	49
340~460V	EM730-030-3/3B	30	60	70
	EM730-037-3/3B	37	75	85
	EM730-045-3	45	90	105
	EM730-055-3	55	110	134
	EM730-075-3	75	150	168
	EM730-090-3	90	176	200
	EM730-110-3	110	210	235
	EM730-132-3	132	253	290
	EM730-160-3	160	304	340
	EM730-185-3	185	340	

Table 1-1 EM730 Series Inverter

User Manual of EM730 Series Inverter

EM730-200-3	200	380	
EM730-220-3	220	426	
EM730-250-3	250	465	
EM730-280-3	280	520	
EM730-315-3	315	585	
EM730-355-3	355	650	
EM730-400-3	400	725	
EM730-450-3	450	820	

- ★ Correct selection of the inverter: The rated output current of the inverter is greater than or equal to the rated current of the motor, taking into account the overload capacity.
- ★ The difference between the rated power of the inverter and that of the motor is usually recommended not to exceed two power segments.
- ★ When a high-power inverter is provided with a low-power motor, the motor parameters must be entered accurately to prevent the motor from damage as a result of overload. The technical specifications of the EM730 series inverter are shown in Table 1-2.

	Table 1-2 Technical Specifications of EM730 Series Inverter		
]	Item	Specification	

Item		Specification				
Power Rated voltage of		Three-phase 340V-10% to 460V+10%,				
	Rated voltage of	Single-phase/three-phase 200V-10% to 240V+10%;				
supply	power supply	50-60Hz \pm 5%; voltage unbalance rate: <3%				
	Maximum output	The maximum output voltage is the same as the input power				
	voltage	voltage.				
	Rated output current	Continuous output of 100% rated current				
Output		150% heavy-duty rated current: 60s (185~450kw 140%				
	Maximum overload	heavy-duty rated current: 60s);				
	current	120% light-duty rated current: 60s; 150% light-duty rated				
		current: 10s; 180% light-duty rated current: 2s				
D i	Drive mode	V/F control (VVF); speed sensorless vector control (SVC)				
Basic	Input mode	Frequency (speed) input, torque input				
functions		Keyboard, control terminal (two-line control and three-line				
		control), communication				

	Frequency control range	0.00~600.00Hz/0.0~3000.0HZ				
	Input frequency	Digital input: 0.01Hz/0.1Hz				
	resolution	Analog input: 0.1% of maximum frequency				
	Speed control range	1:50 (VVF), 1:200 (SVC)				
	Speed control accuracy	Rated synchronous speed $\pm 0.2\%$				
	Acceleration and deceleration time	0.01 s to 600.00 s / 0.1 s to 6,000.0 s / 1 s to 60,000 s				
	Voltage/frequency	Rated output voltage: 20% to 100%, adjustable				
	characteristics	Reference frequency: 1Hz to 600Hz/3,000Hz				
	Tangua haagt	Fixed torque boost curve				
	Torque boost	Any V/F curve is acceptable.				
	Starting torque	150%/1Hz (VVF)				
	Starting torque	150%/0.25Hz (SVC)				
	Torque control accuracy	±8% rated torque (SVC)				
	Self-adjustment of	When the input voltage changes, the output voltage will				
	output voltage	basically remain unchanged.				
	Automatic current	Output current is automatically limited to avoid frequent				
	limit	overcurrent protection actions.				
		Braking frequency: 0.01 to maximum frequency				
	DC braking	Braking time: $0 \sim 30$ s				
		Braking current: 0% to 150% rated current				
	Signal input source	Communication, multi-speed, analog, etc.				
	Reference power	10V/20mA				
Input and	supply					
output Terminal control 24V/100mA		24V/100mA				
function	power					
	Digital input terminal	5-channel digital multi-function input: X1~X5				

		X5 can be used as the high-speed pulse input (max 100kHZ).				
		2-channel analog inputs:				
	Analog input	One (AI1) voltage source: -10 to 10V input;				
	terminal	One channel (AI2): 0 to 10V input voltage or 0 to 20mA				
		input current optional;				
		Multi-function output of one open collector and one relay				
	Digital output	Maximum output current of the collector: 50mA;				
	terminal	Relay contact capacity: 250VAC/3A or 30VDC/1A,				
		EA-EC: normally open; EB-EC: normally closed				
	Analog output	One multi-function analog terminal output				
	terminal	M1: 0-10V/0-20mA multi-function analog output terminal				
V and a soul	LED display	The LED digital tube displays relevant information about the				
Keyboard LED display		inverter.				
Protection	Protective Function	Short circuit, overcurrent, overvoltage, undervoltage, phase				
Protection	riotective runction	loss, overload, overheat, load loss, external protection, etc.				
		Indoor, at an altitude of less than 1 km, free of dust,				
	Location	corrosive gases and direct sunlight. When the altitude is				
		higher than 1km, it is derated by 1% per 100m. The				
		maximum allowable altitude is 3km.				
TT		-10 $^{\circ}$ C to +50 $^{\circ}$ C, 5% to 95%RH (no condensation). When				
Use conditions	Applicable	the ambient temperature exceeds 50°C, it needs to be derated				
conditions	environment	by 3% per 1°C temperature rise. The maximum allowable				
		ambient temperature is 60°C.				
	Vibration	Less than 0.5g				
	Storage environment	$-40^{\circ}\text{C} \sim +70^{\circ}\text{C}$				
	Installation method	Wall-mounted or installed in the cabinet				
Leve	ls of protection	IP20/IP21 (with plastic baffle)				
Со	oling method	Forced air cooling				

1.2 Detailed Introduction to Running Status of EM730 series Inverter

1.2.1 Working status of inverter

The working status of EM730 series inverter is divided into: parameter setting status, normal running status, jog running status, self-learning running status, stop status, jog stop status and protection status.

- Parameter setting status: After being powered on and initialized, the inverter will be in the standby status with no trip protection or start command, and have no output.
- Normal running status: Upon receiving a valid start command (from the keyboard, control terminal and communication), the inverter will have the output based on the set input requirements, driving the motor to rotate.
- Jog running status: This is enabled by the keyboard, external terminal or communication, driving the motor to rotate at the jog input speed.
- Self-learning running status: This is enabled by the keyboard, detecting relevant parameters of the motor in the stationary or rotating status.
- Stop status: It is a process for the output frequency to decrease to zero according to the set deceleration time in the case of invalid operating commands.
- Jog stop status: It is a process for the output frequency to decrease to zero according to the jog deceleration time in the case of invalid jog operating commands.
- Protection status: Refer to the inverter status in the case of any protection.

1.2.2 Running mode of inverter

The running mode of the inverter refers to the control law of the inverter to drive the motor to rotate at the required speed and torque. The running mode includes:

- General open-loop space vector control-VVF control: suitable for applications where the speed is not changing fast and there are not high requirements for the accuracy of rotating speed, and most AC motor drives.
- Speed sensorless vector control-SVC control: advanced speed estimation algorithm, involving open-loop vector control and high control accuracy but no encoder.

1.2.3 Set mode of inverter

The set mode of the inverter refers to the physical quantity that is taken as the controlled target when the inverter drives a motor.

• Speed setting mode with the motor speed as controlled target

Digital setting, analog input setting, high-speed pulse input setting, communication setting, digital potentiometer setting, process PID setting, simple PLC setting or multi-segment speed

setting can be performed separately or in a mixed manner. Fig. 1-1 to Fig. 1-4 detail various input modes of the EM730 series inverter by speed setting.

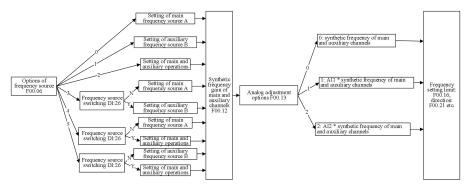


Fig. 1-1Schematic Diagram of Speed Input Mode

As shown in Fig. 1-1, speed setting of EM730 series inverter is mainly divided into the setting of main frequency source A setting (referred to as "main A"), setting of auxiliary frequency source B (referred to as "auxiliary B"), and setting of main and auxiliary operations. The final settings are made by simply adjustment and limitation (e.g. upper frequency limit, maximum frequency limit, direction limit, frequency hopping limit). See Figs. 1-2 to 1-4 for setting details.

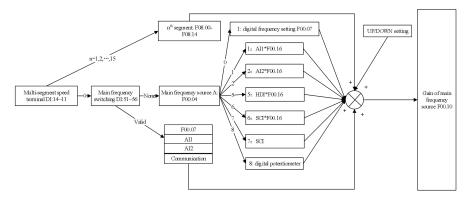


Fig. 1-2 Schematic diagram of Setting of Main Frequency Source A

As shown in Fig. 1-2, it is necessary to comprehensively consider the digital terminal setting and its status during the setting of the main frequency source A. Depending on the terminal settings, multi-segment speed operation can be performed or digital, analog, pulse or communication settings can be applied directly.

If the terminals are unavailable, the current setting channel is determined by the function code F00.04, and final settings are obtained through UP/DOWN setting calculation.

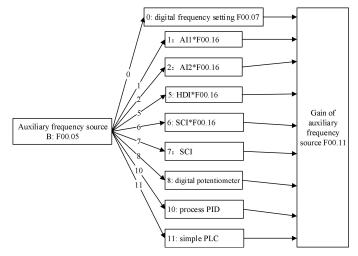


Fig. 1-3 Schematic Diagram of Setting of Auxiliary Frequency Source B

As shown in Fig. 1-3, the current setting channel is determined directly by the function code F00.05 during the setting of the auxiliary frequency source B, and the process PID and simple PLC can be involved in the setting.

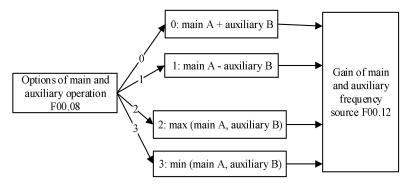
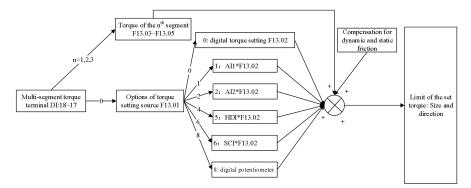


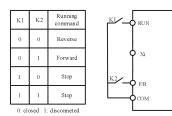
Fig. 1-4 Schematic Diagram of Setting of Main and Auxiliary Operations

As shown in Fig. 1-4, main and auxiliary operations are divided into four types, in which main and auxiliary settings are valid.

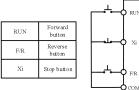
• Torque setting mode with the motor current as controlled target

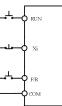
The digital setting, analog input setting, high-speed pulse input setting, communication setting, digital potentiometer setting or multi-segment torque setting can be applied. Fig. 1-5 details the input modes of EM730 series inverters with the set torque.



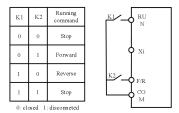

Fig. 1-5 Schematic Diagram of Torque Input Mode

 \star : The jog speed setting mode is superior to other setting modes. That is, when the control terminals FJOG and RJOG are enabled, the inverter will automatically change to the jog speed setting mode, regardless of the current setting mode.

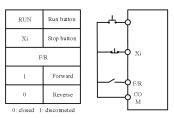

1.2.4 Operation method of inverter


The operation method of the inverter refers to the operating conditions for the inverter to enable the running status. It includes: keyboard operation, terminal operation and communication operation. Terminal operation is divided into two-line control (RUN, F/R) and three-line control (RUN, F/R, Xi (i=1-5) (change the definition of Xi to three-line operation stop control). The control logic of this operation method is shown in Fig. 1-6 (take the NPN input

mode as an example).



(a) Two-line running mode 0 (F00.03=0)



(c) Three-line running mode 0 (F00.03=2)

(b) Two-line running mode 1 (F00.03=1)

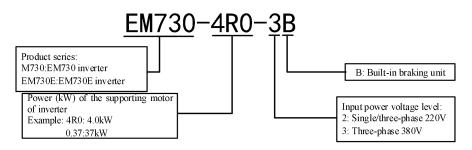
(d) Three-line running mode 1 (F00.03=3)

Fig. 1-6 Control Logic Diagram of Terminal Operation

Chapter 2 Installation

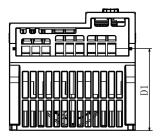
2.1 Product check

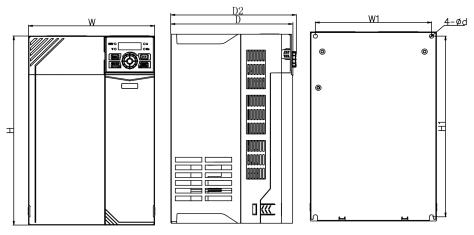
When you get the product, please check it according to Table 2-1.

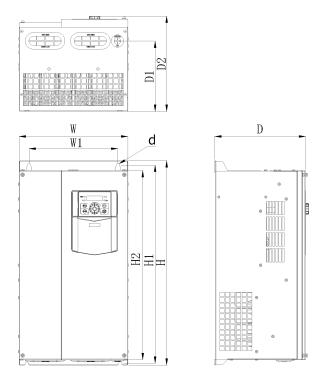

Item to be confirmed	Confirming methods
Check whether the product is consistent	Check the nameplate on the side face of the
with the order.	inverter.
Check whether any part is damaged.	Check the overall appearance for damage caused
	in transportation.
Check whether the fastened parts (e.g.	If necessary, check the product with a
screws) are loose.	screwdriver.

In the case of any defect, contact the agent or our Marketing Department.

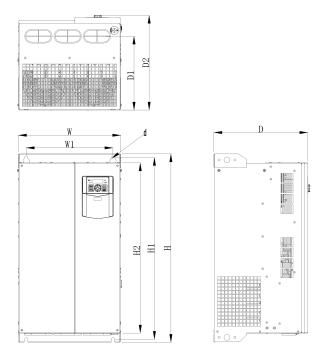
• Nameplate

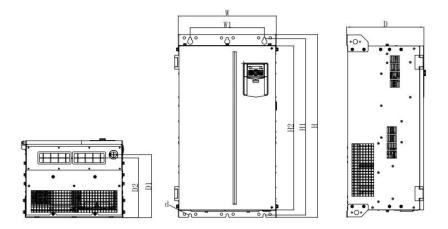

MODEL:	EM7	30-4	R0-3B	
INPUT:				
U1: 3PH	340-	460V	50/60Hz	I1: 11.2A
OUTPUT:				
U2: 3PH	0-U1	0-60	0Hz	
I2: 9.4A			4KW	
01182309				100
SINE	SH	ENZHEN	N SINE ELECT	IN CHINA

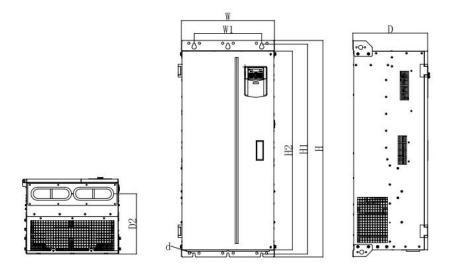

• Description of inverter model

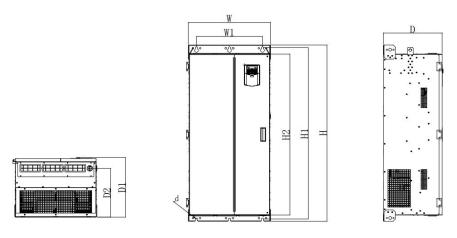

2.2 Outline dimensions and installation dimensions

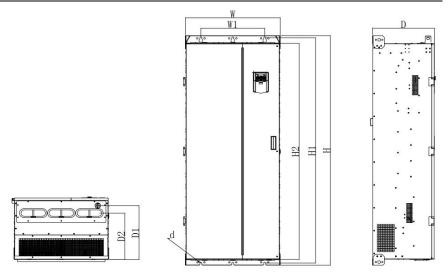
EM730 series inverters involve 25 specifications, 2 types of appearance and 10 installation sizes, as shown in Fig. 2-1 and Table 2-2.

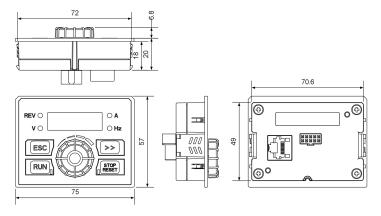



(a) Appearance of EM730-0R7-3B to EM730-022-3B inverters


(b) Appearance of EM730-030-3B to EM730-075-3 inverters


(c) Appearance of EM730-090-3 to EM730-160-3 inverters


(d) Appearance of EM730-185-3 to EM730-220-3 inverters


(e) Appearance of EM730-250-3 inverters

(f) Appearance of EM730-280-3 to EM730-315-3 inverters

(g) Appearance of EM730-355-3 to EM730-450-3 inverters

(h) EM730 keyboard appearance

Fig.2-1 Outline Dimensions of EM730 Series Inverter and Keyboard

Specifications	W	W1	Н	H1	H2	D	D1	D2	d			
EM730-0R4-2B	75	7.5				1.40	122		146	(7	1.50	4.5
EM730-0R7-2B		65	142	132		146	67	152	4.5			
EM730-1R5-2B	02	00	170	1(2		126	0.5	1.4.1	47			
EM730-2R2-2B	93	82	172	163		136	85	141	4.7			
EM730-0R7-3B	75	(5	142	122		140	(7	150	4.5			
EM730-1R5-3B	75	65	142	132		146	67	152	4.5			
EM730-2R2-3B	93	82	172	163		136	85	141	4.7			
EM730-4R0-3B	95	82	172	105		130	0.5	141	4./			
EM730-5R5-3B	109	98	207	196		154	103	160	5.5			
EM730-7R5-3B	109	90	207	190		134	105	100	5.5			
EM730-011-3B	136	125	250	240		169	115	174	5.5			
EM730-015-3B	150	125	230	240		109	115	1/4	5.5			
EM730-018-3B	190	175	293	280		184	145	189	6.5			
EM730-022-3B	170								0.5			
EM730-030-3			200 454	440	420	205	156	212				
EM730-030-3B	245	200							7.5			
EM730-037-3	245	200										
EM730-037-3B												
EM730-045-3	300	300	266	524	508	480	229	174	236	9		
EM730-055-3	500	200	524	500	+00		1/-	230				
ЕМ730-075-3	335	286	580	563	536	228	177	235	9			
EM730-090-3	335	286	630	608	608 570	310	247	317	11			
EM730-110-3	555	200	030		570			317	11			
EM730-132-3	430	330	770	747	710	710 311	248	319	13			
EM730-160-3	430	550		1 - 1	/10				15			
EM730-185-3	422	320	786	758	709	335	271	256.4	11.5			
EM730-200-3	441	320	1025	989	942	357		285	11.5			

Table 2-2 Outline and Installation Dimensions of EM730 Series Inverter

User Manual of EM730 Series Inverter

EM730-220-3									
EM730-250-3									
EM730-280-3									
EM730-315-3	560	450	1024	1170.5	1100	400		333	13
EM730-355-3									
	(())	442	1507	15(7	1504	420	275 5	225.5	12
EM730-400-3	660	443	1597	1567	1504	430	375.5	325.5	13
EM730-450-3									

2.3 Installation Site Requirements and Management

- When carrying the inverter, hold its bottom.
 If you hold the panel only, the body main fall to hit your feet.
- 2. Install the inverter on non-flammable boards (e.g. metal).If the inverter is installed on a flammable object, a fire may occur.
- 3. When two or more inverters are installed in one control cabinet, please install a cooling fan and keep the air temperature below 50 °C at the air inlet. Overheating may cause fire and other accidents.

2.3.1 Installation site

The installation site should meet the following conditions:

- 1. The room is well ventilated.
- 2. The ambient temperature should be -10° C to 50° C. When the plastic case is used at the ambient temperature above 40° C, remove the top baffle.
- The controller should be free from high temperature and humidity (less than 90% RH) or rainwater and other liquid droplets.
- 4. Please install the inverter on a fire-retardant object (e.g. metal). Never install it on flammable objects (e.g. wood).
- 5. No direct sunlight.
- 6. There should be no flammable or corrosive gas and liquid.
- 7. There should be no dust, oily dust, floating fibers or metal particles.
- 8. The installation foundation should be secured and vibration-free.

9. Avoid electromagnetic interference and keep the controller away from interference sources.

2.3.2 Environment temperature

In order to improve the operational reliability, please install the inverter in a well-ventilated place. When it is used in a closed cabinet, a cooling fan or cooling air conditioner should be installed to keep the ambient temperature below 50° C.

2.3.3 Preventive measures

Take protective measures to the inverter during installation to prevent metal fragments or dust generated in drilling and other processes from falling into the inverter. Remove the protection after installation.

2.4 Installation Direction and Space

The EM730-1R5-3B inverters and above are equipped with the cooling fan for forced air cooling. To ensure good cyclic cooling effects, the inverter must be installed in a vertical direction, and sufficient spaces must be reserved between the inverter and adjacent objects or baffles (walls). Refer to Fig. 2-2.

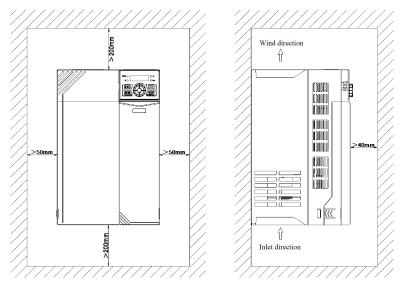


Fig.2-2 Inverter Installation Direction and Space

Chapter 3 Wiring

3.1 Connection of Peripheral Device

The standard connection between the EM730 series inverter and peripheral devices is shown in Fig.3-1.

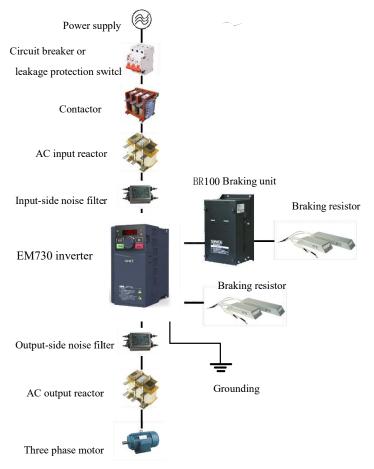
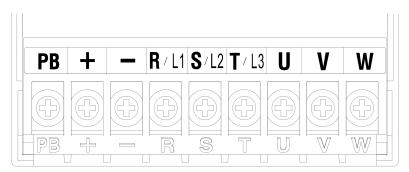


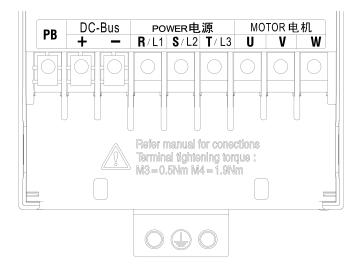
Fig.3-1 Connection of Inverter and Peripheral Devices

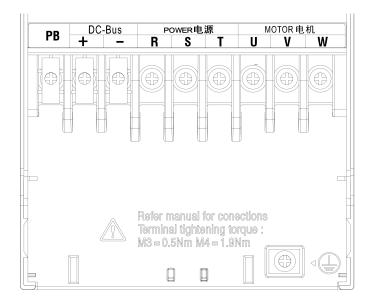

3.2 Wiring of Main Circuit Terminal

3.2.1 Composition of main circuit terminal

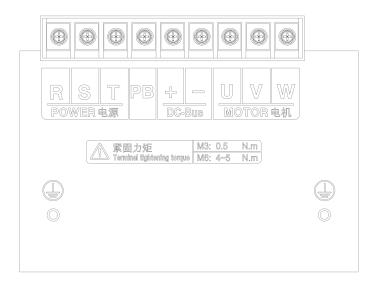
The main circuit terminal of the EM730 series inverter consists of the following parts:

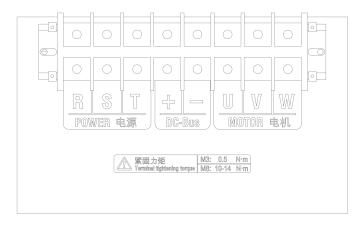
- Three-phase AC power input terminals: R, S, T
- Earth terminal:
- DC bus terminals: (+)
- Terminals of dynamic braking resistor: PB, (+)
- Motor terminals: U, V, W

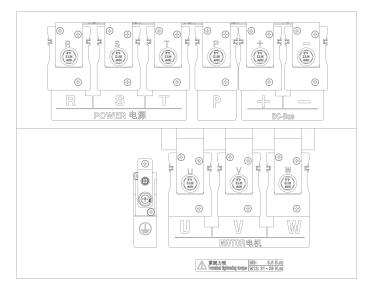

The layout of main circuit terminals is shown in Fig. 3-2.

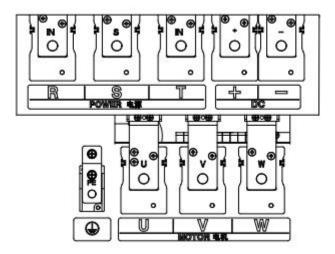

a) Schematic Diagram of Terminals (EM730-0R7-3B~EM730-1R5-3B)

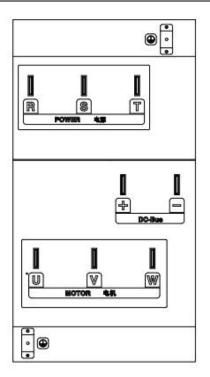
Note:


EM730-0R4-2B~ EM730-0R7-2B terminals are the same as EM730-0R7-3B~ EM730-1R5-3B; EM730-1R5-2B~ EM730-2R2-2B terminals are the same as EM730-2R2-3B~ EM730-4R0-3B.


b) Schematic Diagram of Terminals (EM730-2R2-3B~EM730-4R0-3B)


c) Schematic Diagram of Terminals (EM730-5R5-3B~EM730-022-3B) (with slight difference in the grounding position)


d) Schematic Diagram of Terminals (EM730-030-3/3B~EM730-037-3/3B)


e) Schematic Diagram of Terminals (EM730-045-3~EM730-110-3)

f) Schematic Diagram of Terminals (EM730-132-3~EM730-160-3)

(g) Schematic Diagram of Terminals (EM730-185-3~EM730-250-3)

(h) Schematic Diagram of Terminals (EM730-280-3~EM730-450-3)

3.2.2 Functions of main circuit terminals

The functions of the main circuit terminals of the EM730 series inverter are shown in the following table. Please connect wires correctly according to the corresponding functions.

Terminal label	Function description
	AC power input terminal, connected to three-phase AC power supply (the
R/L1, S/L2, T/L3	single-phase power input terminal can be connected with any two terminals)
U, V, W	AC output terminal of the inverter, connected to three-phase AC motor
$\oplus \ominus$	Positive and negative terminals of the internal DC bus, connected to external
	braking unit
⊕, PB	Braking resistor terminal, with one end of the braking resistor connected to \oplus
	and the other end to PB

Functions	of	main	airquit	torminala
runctions	01	main	circuit	terminals

₽,⊕	DC reactor terminal, for the external DC reactor of EM730-090-3 and above
	Grounding terminal, connected to earth

3.2.3 Standard wiring diagram of main circuit

The standard wiring diagram of the main circuit of the EM730 series inverter is shown in Fig. 3-3.

• Wiring of built-in brake unit

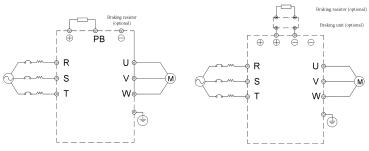


Fig.3-3 Standard Wiring of Main Circuit

3.2.4 Input side wiring of main circuit

Installation of circuit breaker

Install the air circuit breaker (MCCB) corresponding to the inverter between the power supply and input terminal.

- The MCCB capacity should be 1.5-2 times the rated current of the inverter.
- The time characteristics of the MCCB must meet the requirements for overheat protection (150% rated current/1 minute) of the inverter.
- When the MCCB is used with multiple inverters or other devices, connect the protection output relay contact of the inverter in series to the power contactor coil, as shown in Fig.3-4, to disconnect the power supply according to the protection signal.

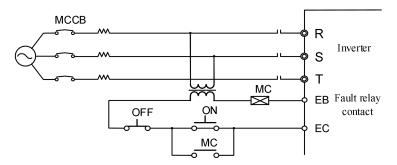


Fig.3-4 Connection of Input Circuit Breaker

Installation of leakage circuit breaker

Since the inverter outputs high-frequency PWM signals, a high-frequency leakage current will be generated. Please use the dedicated leakage circuit breaker with the current sensitivity above 30 mA. If an ordinary leakage circuit breaker is used, use a leakage circuit breaker with the current sensitivity above 200 mA and action time of more than 0.1 s.

Installation of electromagnetic contactor

Connect the electromagnetic contactor that matches the power of the inverter, as shown in Fig. 3-4.

- Do not control the operation and stop of the inverter via the electromagnetic contactor on the incoming line side. Frequent use of this method is an important cause of damage to the inverter. The frequency of operation and stop of the electromagnetic contactor on the incoming line side must not exceed once every 30 min.
- After the power supply is restored, the inverter will not run automatically.

Connection with terminal block

The phase sequence of the input power supply is unrelated to that (R, S, T) of the terminal block, so that the terminals of the input power supply can be connected arbitrarily.

Installation of AC reactor

When a large-capacity (above 600KVA) power transformer is connected, or the input power supply is connected to a capacitive load, a high inrush current will be generated, which will cause damage to the rectifier part of the inverter. In this case, please connect a three-phase AC reactor (optional) to the input side of the inverter. This will not only suppress the peak current and voltage, but also improve the power factor of the system.

Installation of surge suppressor

When an inductive load (electromagnetic contactor, solenoid valve, solenoid coil, electromagnetic circuit breaker, etc.) is connected near the inverter, please install a surge suppressor.

Installation of noise filter on power supply side

The noise filter is used to suppress the noise that invades the inverter from the power cable, and the impact of inverter noise on the power grid.

- Use a dedicated noise filter for the inverter. Ordinary noise filters do not have good effects, so they are not used usually.
- The correct and incorrect installations of the noise filter are shown in Fig. 3-5 and Fig. 3-6.

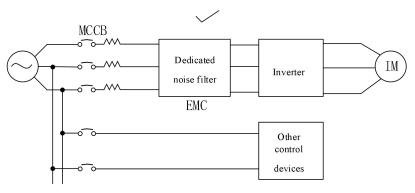


Fig.3-5 Correct Installation of Noise Filter

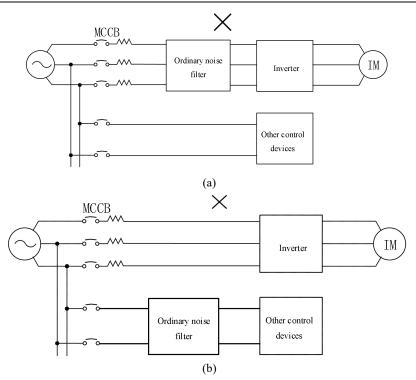


Fig. 3-6 Incorrect Installation of Noise Filter

3.2.5 Output side wiring of main circuit

Wiring of inverter and motor

Connect the output terminals (U, V, W) of the inverter to those (U, V, W) of the motor.

During operation, check whether the motor rotates forward when a forward rotation command is sent. If the motor rotates reversely, exchange any two wires of the output terminals (U, V, W) of the inverter.

Prohibition of connection of the power cable to output terminal

Never connect the power cable to output terminal. When the voltage is applied on the output terminal, the internal components of the inverter may be damaged.

Prohibition of short circuit or grounding of output terminal

Do not directly touch the output terminals, or short-circuit the output cable and inverter housing; otherwise, electric shock and short circuit may be caused. In addition, never short-circuit the output cable.

Prohibition of use of phase-shifting capacitor

Do not connect a phase-shifting advanced electrolytic capacitor or LC/RC filter to the output circuit; otherwise, the inverter may be damaged.

Prohibition of use of electromagnetic switch

Do not connect the electromagnetic switch or electromagnetic contactor to output circuit. Otherwise, such devices will enable overcurrent and overvoltage protection and even damage the internal components of the inverter in severe cases.

When an electromagnetic contactor is used to switch the PF power supply, make sure that switching is not performed until the inverter and motor are shut down.

Installation of noise filter on output side

Connect a noise filter on the output side of the inverter to reduce inductive interference and radio interference.

- Inductive interference: Electromagnetic induction will lead to noise of the signal line and malfunction of controls.
- Radio interference: The high-frequency electromagnetic waves emitted by the inverter itself and cables will cause interference to nearby radio devices and noise in signal reception.
- The noise filter installation on the output side is shown in Fig. 3-7.

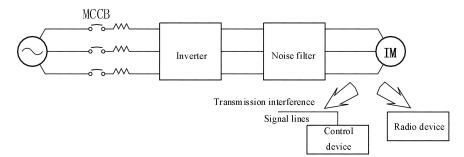


Fig.3-7 Noise Filter Installation on Output Side

Solution to inductive interference

To suppress the inductive interference on the output side, all output cables can be laid in the grounded metal tubes, in addition to the aforesaid installation of the noise filter. When the distance between the output cable and signal line is greater than 30 cm, the impact of inductive interference will decrease significantly, as shown in Fig. 3-8.

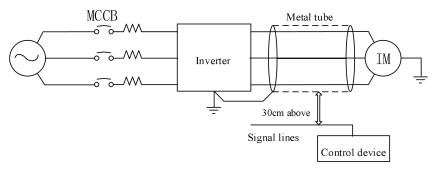


Fig.3-8 Solution to Inductive Interference

Solution to RF interference

The input cable, output cable and inverter itself generates RF interference, which can be reduced by installing noise filters on the input and output sides and shielding the inverter body with an iron box, as shown in Fig. 3-9.

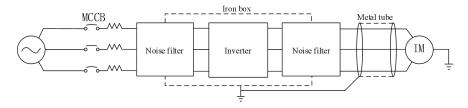


Fig.3-9 Solution to RF Interference

Wiring distance between inverter and motor

The longer the wiring distance between the inverter and motor, the higher the carrier frequency and the higher harmonic leakage current in the cable. This will adversely affect the inverter and nearby devices. Refer to Table 3-2 to adjust the carrier frequency and reduce the high-frequency leakage current.

• When the motor wiring distance exceeds 50 m, connect the output terminals (U, V, W) of the inverter with the dedicated AC reactor (phase capacity: the same as that of the inverter) for inverter output.

Wiring distance between inverter and	<50m	<100m	>100m
motor			
Carrier frequency	Below 10kHz	Below 8kHz	Below 5kHz
Function code F00.23	10.0	8.0	5.0

Table3-2 Wiring Distance and Carrier Frequency between Inverter and Motor

3.2.6 Cable and screw dimensions of main circuit

The cable and screw dimensions of the main circuit are shown in Table 3-3.

Table3-3	Cable Dimensions an	d Terminal S	Screw Speci	fications	

_

Frequency converter model	Terminal Symbol	Terminal Screw	Tightening Torque (N.m)	Wire diameter (mm ²)	Wire Type
EM730-0R4-2B					
EM730-0R7-2B					
EM730-0R7-3B		M3	0.5~0.7		
EM730-1R5-3B				1.5	
EM730-1R5-2B					
EM730-2R2-2B				4	
EM730-2R2-3B	PB, +, -, R, S, T, U, V,				
EM730-4R0-3B	W	M4	1.5~2.0		
EM730-5R5-3B				6	
EM730-7R5-3B					
EM730-011-3B					
EM730-015-3B				10	750V
EM730-018-3B		M5	3.0~4.0		wire
ЕМ730-022-3В				16	
EM730-030-3B					
EM730-037-3B	R, S, T, PB, +, -, U, V,				
EM730-030-3	W,	M6	4.0~5.0	25	
EM730-037-3					
EM730-045-3	R, S, T, +, -, U, V, W,			35	

User Manual of EM730 Series Inverter

EM730-055-3		M8	9.0~10.0	35	
EM730-075-3]			60	
EM730-090-3			15.0 00.0	60	
EM730-110-3		M10	17.0~22.0	90	
EM730-132-3	R, S, T, P, +, -, U, V, W			90	
EM730-160-3	K, S, I, I, I, I, -, O, V, W			120	
EM730-185-3				180	
EM730-200-3					
EM730-220-3				2*120	
EM730-250-3					
EM730-315-3	R, S, T, P, +, -, U, V, W	M12	30.0~40.0	2*150	
EM730-355-3					
EM730-400-3					
EM730-450-3					

Table 3-1 Cable Dimensions and Terminal Screw Specifications **Note:** 1: The specifications of the wire are dependent on its voltage drop. Under normal circumstances, the voltage drop calculated by the following formula should be less than 5V.

Voltage drop = $\sqrt{3}$ * wire resistivity (Ω/KM) * wire length (m) * rated current (A) * 10⁻³ 2: If the wire is in a plastic slot, it should be enlarged by one level.

3: The wire should be crimped to the round terminal suitable for the wire and terminal screw.

4: The specification of the ground wire should be the same as that of the power cable smaller than 16mm². When the power cable is 16mm² or larger, the ground wire should not be smaller than 1/2 of the power cable.

3.2.7 Ground wire

- The ground terminal $\frac{1}{2}$ must be grounded.
- Pay special attention to the third type of grounding (grounding resistance: less than 10Ω).
- The ground wire must not be shared by the welding machine and power devices.

- Select the ground wire according to the technical specifications for electrical equipment, and minimize the length of the ground wire connected to the grounding point.
- Where two or more inverters are used, the ground wires must not form a loop. The correct and incorrect grounding methods are shown in Table 3-10.

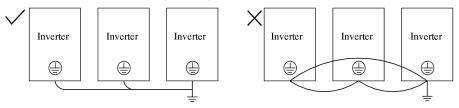


Fig.3-10 Connection of Ground Wire

3.2.8 Installation and wiring of braking resistor and braking unit

Refer to Chapter 10 for the selection and wiring of the braking resistor and braking unit.

For the inverter with a built-in braking unit, connect the braking resistor between the inverter terminal (+) and PB terminal. For the inverter with no built-in braking unit, connect the terminals (+ and -) of the braking unit to those (+ and -) of the DC bus of the inverter, and the braking resistor to the PB+ and PB- terminals of the braking unit. Refer to the user manual of the BR100 braking unit for more information.

3.3 Wiring of Control Circuit Terminal

3.3.1 Composition of control circuit terminal

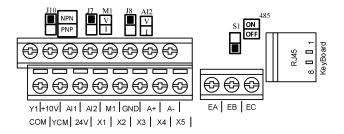


Fig.3-11 Layout of Control Circuit Terminals 1

3.3.2 Functions and wiring of control circuit terminals

Category	Terminal label	Terminal name	Function description
	24V	External power	Supply 24V power to external devices, with
	24 V	supply	the maximum output current of 100mA.
Power supply		Power grounding	Power grounding terminal of the external
	COM	terminal	power supply, and common side of the digital
			input terminal
			Supply 10V power to external devices.
	$\pm 10V$	Analog terminal	Maximum output current: 10.5±0.5V/20mA,
	<u> </u>	power supply	usually as the power supply of the external
			potentiometer
	GND	Analog power	Grounding terminal of analog input and
Analog input	grounding termina		output
	AI1 Analog voltage	Analog voltage	-10V to 10V, 50k Ω input impedance, bipolar
		input	analog voltage input
		Analog	Current or voltage type
		current/voltage	Input range: 0/4-20mA or 0-10V
		input	
		Analog	
Analog output	M1	voltage/current	0-10V/0-20mA; output accuracy: ±2%
		output	
	X1		Program the corresponding terminals by
	X2		setting function codes, to realize the input
	X3		control of the set functions.
Digital input	X4	Multi-function	The input terminal supports PNP and NPN
port		input terminal	input modes, and the default mode is the NPN
	X5		input mode.
	АЗ		X5 can also be used as the high-frequency
		42	pulse input, with the input frequency up to

Table 3-3 Functions of Control Circuit Terminals

User Manual of EM730 Series Inverter

			100kHz.
	Y1	Open collector output terminal	It can be programmed as the multi-function output terminal.
Multi-function digital output	ҮСМ	Common side of Y terminal	The common side YCM of Y terminal and the common side COM of the digital input terminal are independent of each other.
	A+	RS485	positive terminal of RS485 differential signal
Communication	A-	communication terminal	negative terminal of RS485 differential signal
	EA	D alars autout	EA EC: Namella and
Relay output	EB	Relay output terminal	EA-EC: Normally open EB-EC: Normally closed
	EC	terminar	EB-EC. Normany closed
External keyboard port	RJ45	External keyboard terminal	For the external operation panel The upper computer can also be connected through this port for background software debugging.

3.3.3 Wiring of analog input terminal

Wiring of AI1 and AI2 terminals with analog voltage signal:

When the AI2 terminal is in the mode of analog voltage signal input, the switch J8 on the control panel is set to the voltage mode, as shown in Fig. 3-12

When the analog voltage input signal is powered by an external power supply, the wiring of terminals AI1 and AI2 is shown in Fig. 3-12-a.

When the analog voltage input signal is sent by a potentiometer, the terminals AI1 and AI2 are connected as shown in Fig. 3-12-b.

In addition, F02.62 (AI1 input type) and F02.63 (AI2 input type) should be set according to actual needs (0: 0-10V; 1: 4-20mA; 2: 0-20mA; 4: 0-5V).

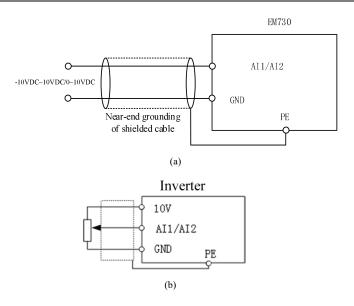


Fig.3-12 AI1/AI2 Terminal Wiring Diagram

Wiring of the input analog current signal of AI2 terminal:

When the AI2 terminal is in the mode of analog current signal input, the switch J8 on the terminal block is set to the current mode.

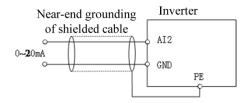
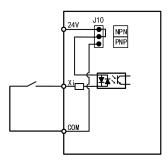
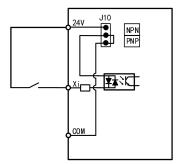
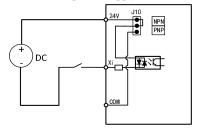
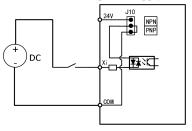




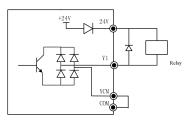
Fig.3-13 Wiring Diagram of External Current Source and AI2 Terminal

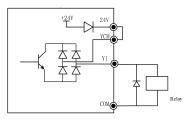

3.3.4 Wiring of multi-function input terminal

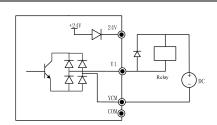
The multi-function input terminals of EM730 series inverters support the access in the NPN or PNP mode. The terminals X1~X5 can be flexibly connected with external devices. The NPN or PNP mode (NPN by default) can be selected via the jumper cap J10 on the control panel. The wiring of the multi-function input terminal in different modes is shown below:



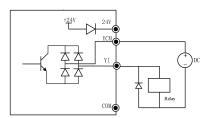
a: Use of internal power supply in NPN mode


b: Use of internal power supply in PNP mode


c: Use of external power supply in NPN mode d: Use of external power supply in PNP mode Fig. 3-14 Wiring Diagram of Multi-function Input Terminals

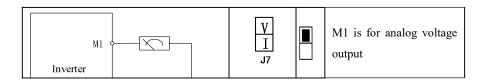

3.3.5 Wiring of multi-function output terminals

The multi-function output terminal Y1 is powered on by the internal 24V power supply of the inverter or an external power supply, as shown in Fig. 3-15:



a: Use of internal power supply NPN

b: Use of external power supply NPN



a: Use of internal power supply PNP Fig.3-15 Wiring of Multi-function Output Terminals

Note: An anti-parallel diode must be included in the relay wire package. The absorption circuit components should be installed at both ends of the coil of the relay or contactor.

3.3.6 Wiring of analog output terminals

The external analog meter connected to the analog output terminal M1 indicates a variety of physical quantities. Choose the output current (0~20mA) or (0~10V) via the jumper cap, M1 corresponding to J7. Set F03.34 as needed (0: 0~10V; 1: 4-20mA; 2: 0~20mA). The jumper cap and terminal wiring is as follows:

3.3.7 Wiring of 485 communication terminals

The communication terminals A+ and A- are the RS485 communication interfaces of the inverter. The online control of the host (PC or PLC controller) and inverter is performed through the connection and communication with the host. The connection of the RS485 and RS485/RS232 adapters to EM730 series inverter is shown in Fig. 3-16, Fig. 3-17 and Fig. 3-18.

• Direct connection of the RS485 terminal of a single inverter to the host for communication:

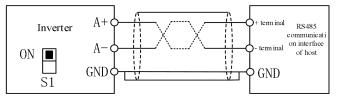


Fig.3-16 Communication Terminal Wiring of Single Inverter

Connection of the RS485 terminals of multiple inverters to host for communication:

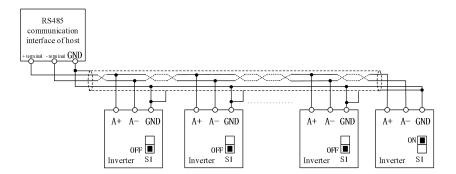
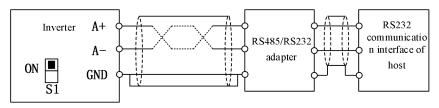
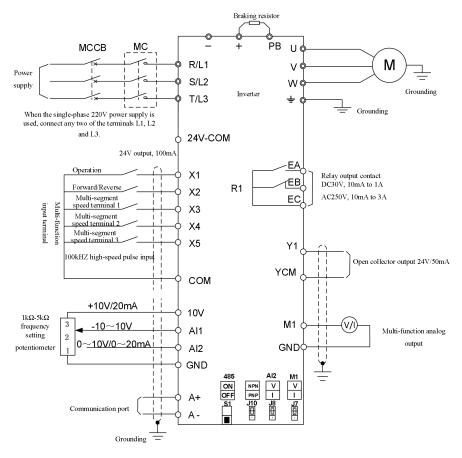



Fig. 3-17 Wiring of Communication Terminals of Multiple Inverters

• Connection to the host via RS485/RS232 adapter for communication:

User Manual of EM730 Series Inverter


Fig. 3-18 Communication Terminal Wiring

3.3.8 Wire and screw dimensions of control circuit

- In order to reduce the interference and attenuation of the control signal, the control signal connection cable should be less than 50m long, and the distance between the control signal connection cable and power line should be greater than 30cm. Use the twisted-pair shielded cable when analog signals are externally inputted.
- It is recommended to use the wire with a diameter of 0.5-1 mm2 in the control circuit.
- The terminal block of the EM730 series inverter is composed of through-type control circuit terminals. Install it with the PH0 Phillips screwdriver. The tightening torque should be 0.5N.m.

3.3.9 Precautions for control circuit wiring

- Connect the control circuit connection wires and other wires separately.
- Connect the control circuit terminals EA, EB, EC, and Y1 separately from other control circuit terminals.
- In order to avoid malfunction caused by interference, use the twisted shielded cables in the control circuit. The wiring distance should be less than 50m.
- Prevent the shield screen from contact with other signal lines and enclosures. The exposed shield screen can be wrapped with insulating tapes.
- It is prohibited to touch the ports and components of the control panel without static electricity protection measures.

3.3.10 Standard Wiring Diagram of Control Circuit

Fig. 3-19 Standard Wiring Diagram of Control Circuit

- It is recommended to use the wires with a diameter of 0.5-1mm² in the control circuit.
- Install the control circuit terminals with the PH0 Phillips screwdriver. The tightening torque should be 0.5N.m.

3.4 Extension wirin

3.5 g of keyboard

- 1) The external keyboard needs to be ordered separately.
- The external keyboard is connected to the RJ45 port via an ordinary network cable (plug: meeting the EIA/TIA568B standards) prepared by the customer.
- 3) Connect the RJ45 port of the keyboard to that of the control panel via a network cable. The keyboard extension cable should be no longer than 3m. Then extension cable may be 10m long in the presence of Cat5E wires and good electromagnetic environments.

3.6 Connection test

After wiring, check the following items.

- Check whether wiring is incorrect.
- Check whether there are screws, terminals and wire scraps inside the inverter.
- Check whether the screws are loose.
- Check whether the exposed wire at the stripped end of the terminal is in contact with other terminals.

Chapter 4 KEYBOARD OPERATIONS

4.1 Keyboard Functions

4.1.1 Structure of LED keyboard

The control panel of EM730 series inverter is a pluggable LED keyboard The LED keyboard has one five-digit LED digital display, four operation buttons, one digital potentiometer, and six status and unit indicators. Users can perform parameter setting, status monitoring and start/stop of the inverter via the keyboard.

Fig. 4-1 LED Keyboard

4.1.2 Functions of keys and indicators on LED keyboard

The functions of the keys and indicators on the LED keyboard are as shown in Table 4-1.

Key/Indicator	Name	Function
	Right	Select the group number and function number of the currently modified function code. Change the monitoring parameters.
ESC	Back	Go back to the previous menu. Cancel the current parameter modification when the menu mode selection level is enabled from the monitoring level.
RUN	Run	When the keyboard control is enabled, press this key to start the inverter.
STOP RESET	Stop/Reset	When the keyboard control is enabled, press this key to stop the inverter. Reset the protection in use.
	Potentiometer/ Confirm key	Turn it clockwise to select the function code and menu group or increase the parameter value. Increase the currently valid reference digital input data. Turn it counterclockwise to select the function code and menu group or decrease the parameter value.
		Decrease the currently valid reference digital input

		data.
		Click it to enter the lower-level menu.
		Confirm and save the parameter modification, and enable the function code following the current function code.
● ● ● Hz A V	Unit indicator	It is ON when the frequency, current, and voltage are displayed.
REV	Running direction indicator	This indicator is ON during reverse running. It is OFF during forward running. It is ON when a certain frequency is being monitored or displayed.
(Green)	Running indicator	It is ON when the inverter is running, flickering when the inverter is being stopped, and OFF after the inverter is stopped.
(Red)	Protection indicator	When the inverter is in the protection status, this indicator will be ON in red.

counterclockwise.)

4.2 Operation Mode of Keyboard with Digital Tube Display

The LED keyboard menu is divided into the monitoring level (Level 0), menu mode selection level (Level 1), function code selection level (Level 2) and parameter level (Level 3) from low to high. The menu levels mentioned below are represent by numbers.

There are five parameter display modes: menu mode (--R--), used to display all function codes; user-defined mode (--U--), used to display only function codes selected by the user based on the F11 group; non-default mode (--L--), used to display only the function codes that differ from the default settings;

Protection information display mode $(--\mathcal{E}--)$: display the current protection information; version information mode $(--\mathcal{P}--)$: display software and product serial numbers.

When the keyboard is powered on, the first monitoring parameter of Level 0 is displayed by default. Press the ESC key to open the Level 1 menu. Users can use the keyboard to select different menu modes. The process of menu mode selection is shown in Fig. 4-2.

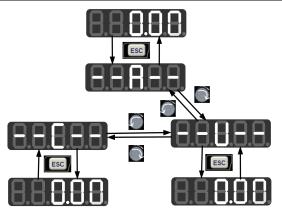


Fig. 4-2 Flowchart of Menu Mode Selection

4.2.1 Full menu mode (--*A*--)

In the full menu mode, press the ENTER key is to enter the Level 2 menu and select any function code. Then press the ENTER key to enter the Level 3 menu and view or modify the function code. Except for a few special ones, the function codes needed by general users can be modified.

The entire process from the initial status of power-on to change of the value of the function code F03.28 to 5.28 in the full menu mode is shown in Fig. 4-3.

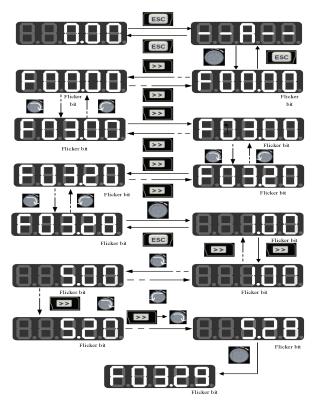


Fig. 4-3 Flowchart from Power-on to F03.28=5.28 Setting

In all menu modes, the user needs to press the ENTER key it to save parameter modifications. Differences after parameter saving are as follows: In the full menu mode, enter the function code following the function code that has been successfully modified. In the user-defined mode, enter the user-defined function code (according to the sequence defined in F11.00-F11.31) following the function code that has been successfully modified. In the non-default mode, enter the non-default function code following the non-default function code that has been successfully modified. In the protection information display mode, enter the protection information function code that has been successfully modified. In the protection information function code that has been successfully modified. In the protection information function code that has been successfully modified. In the protection information function code that has been successfully modified. In the protection information function code that has been successfully modified. In the protection information function code that has been successfully modified. In the protection information function code that has been successfully modified. In the version information display mode, enter the serial number

function code following the serial number function code has been successfully modified.

In the Level 3 menu, press the ESC key **ESC** to abandon parameter modifications.

4.2.2 User-defined mode (--U--)

Enter the F11 group of function codes from the full menu mode. Then the user can arbitrarily set the shortcut for the parameter to be accessed frequently. When F11.00 is enabled for the first time, U00.00 will be displayed by default, meaning that the function code defined by default for F11.00 is F00.00. The lowest cursor bit will flicker. The user can set any function code, similar to the function code selection in the Level 2 menu. After setting, press the ENTER key in the set is and enter the user-defined menu mode to display the set function code.

For example, F11.00 is set to U00.07 and F11.01 to U00.09. F11.00 and F11.01 will be defined as F00.07 and F00.09, respectively. They are distinguished by U and F. U indicates that this function code is user-defined, as shown in Fig. 4-4.

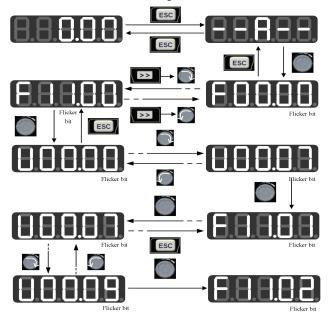


Fig. 4-4 Example of User-defined Mode Setting

In the user-defined mode, press the ENTER key it to enter the Level 2 menu. The Level 2 menu only display 32 user-defined parameters in the F11 group. The user can enter the F11 group from the full menu mode to set these function codes.

After the function codes are defined in the F11 group, enter the user-defined mode. Then

we can see F00.07 defined by the first function code F11.00, F00.09 defined by the first function code F11.01, and so on to F11.31, 32 in total. Function code modification in the Level 3 menu is equivalent to that in the full menu mode, and the modification method is also the same.

In the Level 2 menu of the user-defined mode, turn the potentiometer key on the keyboard, to change the function code defined by F11.00 to that defined by F11.31.

When the right shift key \swarrow is pressed in the Level 2 menu, the cursor will not shift. Press the ENTER key \textcircled to enter the Level 3 menu. If the displayed function code is modifiable currently, the lowest bit indicated by the cursor will flicker. Parameter modification is the same as that in the Level 3 menu under the full menu mode. After modification, press the ENTER key to confirm and save the parameters and enable next user-defined parameter. Function code modifications in the Level 3 menus under different menu modes have equivalent effects.

4.2.3 Non-default mode (--*L*--)

In the non-default mode, press the ENTER key to enter the Level 2 menu. The first parameter different from the default settings of the inverter will be displayed, starting from F00.00. When the right shift key is pressed in the Level 2 menu, the cursor will not shift. If the increment or decrement key on the keyboard is pressed, the function group and function code will not be modified, and the non-default function code following and in front of the current function code will be displayed respectively. If the displayed function code is modifiable currently in the Level 3 menu, the lowest bit indicated by the cursor will flicker. In this case, parameters can be modified in the Level 3 menu under the full menu mode. After modification, press the ENTER key is to confirm and save the parameters and enable next non-default parameter.

For example, change F00.03 to 1 and F00.07 to 40.00 in the full menu mode, which are not default values. Then enable the non-default mode. F00.03 will be displayed first. When the potentiometer key in on the keyboard is turned clockwise, F00.07 will be displayed; and when the potentiometer key in on the keyboard is turned counterclockwise, F00.03 will be returned, as shown below:

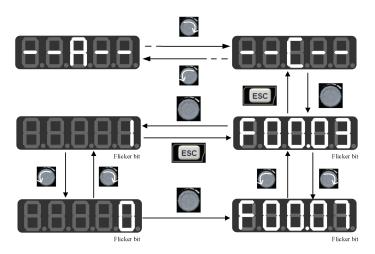


Fig. 4-5 Function Code Modification in Non-default Mode

4.2.4 Protection information display mode (--E--)

In the protection information display mode, press the ENTER key to enter the Level 2 menu. The Level 2 menu will only display the fault record group under the F19 group, which is conducive to direct viewing of protection record information.

Turn the potentiometer key on the keyboard in the Level 2 menu under this mode to increase or decrease the function code of the protection group, and the shift key will be unavailable. In case of protection, you can press the shift key will be on the keyboard in the Level 3 menu to switch the display of the protection code, protection output frequency, protection output current, protection bus voltage, and protection operation status.

4.3 Protection Monitoring

When the inverter is in the protection status, you can directly press the right shift key to switch the current protection type and the output frequency, output current, output voltage, running status and working time during the protection.

4.4 Operation Monitoring

4.4.1 Normal monitoring

In the monitoring status mode 1 of EM730, you can set any function code to be viewed between F12.33 and F12.37. When F12.32=1, the monitoring mode 1 will be enabled. If the Level 0 monitoring menu appears, you can press the right shift key to switch the monitoring parameters according to the order set for each function code between F12.33 and F12.37. When the inverter changes from the stop status to running status, the monitoring

parameter will automatically change from the current value to that indicated by F12.33. When the inverter changes from the running status to stop status, the monitoring parameter will automatically change from the current value to that indicated by F12.34.

4.4.2 Editing Mode

Quick change in the monitoring mode:

When F00.04 is set to "0: digital frequency setting F00.07", turn the potentiometer key of to directly change the offset;

When F00.04 is set to "8: digital potentiometer", turn the potentiometer key \square to change the set frequency of F12.42 digital potentiometer. In this case, turn the potentiometer key \square to enter the editing mode. The value will change from the second digit of the digital tube by default. The digital tube corresponding to the changed digit will flash. Press the right shift key \square to nove to next digit on the right. Press the ESC key \square to cancel change and return to the original value. Or, press the ENTER key \square to confirm the change and exit the editing mode. The indicator will not be flicker. Press the right shift key \square to enable the normal monitoring mode: switch to next monitoring parameter. Fig. 4-6 shows the editing status in the monitoring mode.

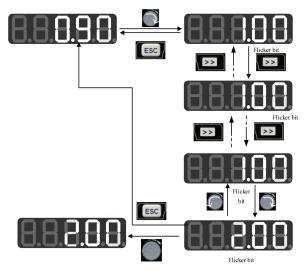


Fig. 4-6 Editing Status in the Monitoring Mode

4.5 Run/Stop

After setting the parameters, press the RUN key **RUN** to enable the normal operation of

the inverter, and the STOP/RESET key [stop to stop the inverter.

4.6 Other Warning Prompts

4.6.1 *P.-ON* prompt

The *P.-OP* prompt will be displayed after power-on initialization.

4.6.2 P.-OFF prompt

When the voltage drops to 250V (with the soft start disconnected), P-DFF will be displayed, and the keyboard can be operated freely to exit the P-DFF display and display normal information. In case of no keyboard operation within 5s, P-DFF will be displayed again. After the voltage is restored and the soft start is engaged, P-Df will be displayed again.

4.6.3 SOFE.E warning

If the soft start is not engaged and the inverter is started, the 50FE.E warning will appear. After the voltage is restore and the soft start is engaged, normal operation will be enabled.

Chapter 5 Trial run

5.1 Inverter Commissioning Process

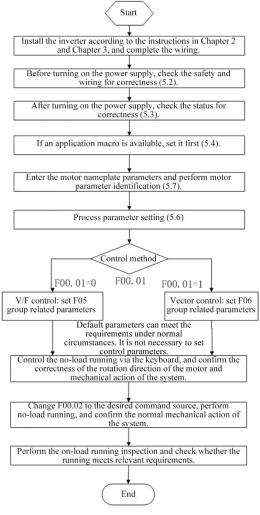


Fig. 5-1 Inverter Commissioning Flowchart

5.2 Confirmation before Power-on

Please confirm the following items before turning on the power supply:

Item to be confirmed	Confirmation content
Power wiring confirmation	Check whether the input power voltage is consistent with the voltage of the inverter.
	Confirm that the circuit breaker has been connected to the power supply circuit, and the power cables are correctly connected to the input terminals (R, S, T) of the inverter.
	Make sure that the inverter and motor are properly grounded.
Motor wiring confirmation	Confirm that the motor is correctly connected to the output terminals (U, V, W) of the inverter, and the motor wiring is secured.
Confirmation of braking unit and braking resistor	Make sure that the braking resistor and braking unit are connected as shown in Fig. 3-3 (use the dynamic braking resistor if necessary during operation).
Control terminal wiring confirmation	Check whether the control terminals of the inverter are correctly and reliably connected to other controls.
Control terminal status confirmation	Make sure that the control terminal circuit of the inverter is disconnected to prevent operation upon powering on.
Mechanical load confirmation	Confirm that the machinery is in the no-load state and free of danger in operation.

5.3 Inverter Status Confirmation after Power-on

After the power supply is turned on, the control panel (keyboard) of the inverter displays the following information in the normal status.

Status	Display	Note
During normal operation	0	The digital setting 0Hz is displayed by default
Protection	Protection code in character or Exx format	The protection code is displayed in the protection status. See the protection measures in Chapter 6.

5.4 Precautions for Application Macro Setting

F16.00 is an industry application macro option. Select the application macro according to the specific application, and press the Enter key to automatically restore default settings. See Chapter 10 for details on application macros.

5.5 Start and Stop Control

Function code	Function code name	Parameter description	Default setting	Attribute
	Options of	0: keyboard control		
F00.02	command	1: Terminal control	0	0
	source	2: Communication control		

F00.02=0: keyboard control

The start and stop of the inverter are controlled by the RUN key, STOP key on the keyboard. In the case of no trip protection, press the RUN key to enter the running status. If the green LED indicator above the RUN key is normally ON, it indicates that the inverter is running. If this indicator is flickering, it indicates that the inverter is in the status of deceleration to stop.

F00.02=1: terminal control

The inverter start and stop are controlled by the start and stop control terminals defined by the function code F02.00 to F02.04. Terminal control is dependent on F00.03.

F00.02=2: communication control

The inverter start and stop are controlled by the host through the RS485 communication port.

Function code	Function code name	Parameter description	Default setting	Attribute
F04.00	Start-up method	0: direct start 1: start of speed tracking	0	0

F04.00=0: direct start

The inverter is started at the starting frequency, following the DC braking (not suitable when F04.04=0) and pre-excitation (not suitable when F04.07=0). The starting frequency will change to the set frequency after the holding time.

F04.00=1: start with speed tracking

The inverter is smoothly started at the current rotating frequency of the motor, following the speed tracking.

Function code	Function code	Parameter description	Default setting	Attribute
F04.19	ISton mode	0: Slow down to stop 1: Free stop	0	0

F04.19=0: deceleration to stop

The motor decelerates to stop according to the set deceleration time [default setting: based on F00.15 (deceleration time 1)].

F04.19=1: free stop

When there is a valid stop command, the inverter will stop output immediately, and the motor will freely coast to stop. The stop time depends on the inertia of the motor and load.

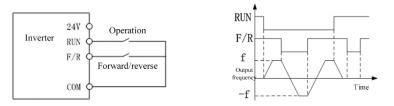
Function code	Function code name	Parameter description	Default setting	Attribute
	Options of terminal control mode	0: terminal RUN (running) and F/R (forward/reverse) 1: terminal RUN (forward) and F/R (reverse) 2: terminal RUN (forward), Xi (stop) and F/R (reverse) 3: terminal RUN (running), Xi (stop) and F/R (forward/reverse)	0	0

5.5.1 Terminal control of start and stop

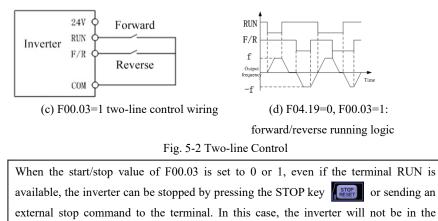
Terminal RUN: Xi terminal is set to "1: terminal RUN"

Terminal F/R: Xi terminal is set to "2: running direction F/R"

Terminal control can be divided into two types: two-line control and three-line control.


Two-line control:

F00.03=0: the terminal RUN is enabled and the terminal F/R controls forward/reverse running.

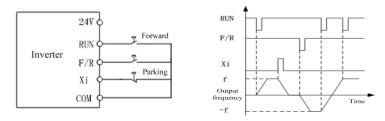

Enable/Disable the terminal RUN to control the start and stop of the inverter, and the terminal F/R to control the forward/reverse running. If F00.21 is set to 1 and reverse running is disabled, the F/R terminal will not be available. When the mode of deceleration to stop is selected, the logic diagram is as shown in Fig. 5-2 (b).

F00.03=1: the terminal RUN controls forward running, and the terminal F/R is in the reverse mode.

Enable/Disable the terminal RUN to control the forward running and stop of the inverter, and the terminal F/R to control the reverse running and stop. When the terminals RUN and F/R are enabled simultaneously, the inverter will be stopped. If reverse running is disabled, the terminal F/R will not be available. When the mode of deceleration to stop is selected, the logic of forward/reverse running is as shown in Fig. 5-2 (d);

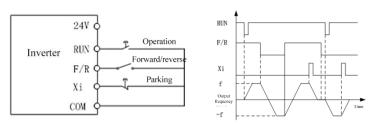
(a) Wiring diagram of two-line control (F00.03=0) (b) F04.19=0, F00.03=0, run the forward/reverse logic

running status until the terminal RUN is disabled and then enabled.


Three-line control:

F00.03=2: the terminal RUN controls forward running, the terminal Xi is for stop, and the terminal F/R is in the reverse status.

The terminal RUN is normally ON for forward running, and the terminal F/R is normally ON for reverse running, with valid pulse edges. The terminal Xi is normally closed for stop, with the valid level. When the inverter is in the running status, press Xi to stop it. In the case of deceleration to stop (F04.19=0), the logic diagram is as shown in Fig. 5-3Fig. 7-7(b). The terminal Xi is for "three-line running and stop control" as defined by F02.00 to F02.04.


F00.03=3: the terminal RUN is for running, Xi for stop and F/R for forward/reverse control.

The terminal RUN is normally ON for running, with the valid pulse edge, F/R for forward/reverse switching (forward in the OFF status and reverse in the ON status), and Xi is normally OFF for stop, with the valid level. In the case of deceleration to stop (F04.19=0), the logic diagram is as shown in Fig. 5-3(d).

(a) Wiring diagram of three-line control (F00.03=2) (b) Forward/reverse control logic

(F04.19=0, F00.03=2)

(c) Wiring diagram of three-line control (F00.03=3) (d) Forward/reverse running logic

(F04.19=0, F00.03=3)

Fig. 5-3 Three-line Control

The three-line control logic of the EM730 series inverter is consistent with the conventional electrical control. The keys and knob switches should be used correctly as shown in the schematic diagram. Otherwise, operation errors may be caused.

5.6 Common Process Parameters of Inverter

Function code	Function code name	Parameter description	Unit	Default setting	Attribute
F00.01	Drive control mode of motor 1	0: V/F control (VVF) 1: Speed sensorless vector control (SVC)		0	0
F00.04	Options of main frequency source A	0: digital frequency setting F00.07 1: AI1 2: AI2 5: high frequency pulse input (X5) 6: percentage setting of main frequency communication 7: direct setting of main frequency communication 8: digital potentiometer setting		8	0
F00.07	Digital frequency setting	0.00 to maximum frequency F00.16	Hz	0.00	•
F00.14	Acceleration time 1	0.00~650.00 (F15.13=0)	S	15.00	•
F00.15	Deceleration time 1	0.00~650.00 (F15.13=0)	S	15.00	•
F00.16	Maximum frequency	$1.00{\sim}600.00$	Hz	50.00	0
F00.18	Upper frequency limit	lower frequency limit F00.19 to maximum frequency F00.16	Hz	50.00	•
F00.19	Lower frequency limit	0.00 to upper frequency limit F00.18	Hz	0.00	•
F00.21	Reverse control	0: allow forward/reverse running 1: prohibit reversing		0	0

Note: Common process parameters may also include the input and output terminal function settings. Refer to the F02 and F03 groups in the function table.

5.7 Motor Parameter Identification

For the better control performance, motor parameters must be identified.

Identification Method	Application	Identification Effect
F01.34=1 Static self-learning of asynchronous motor F01.34=11	It is applied where the motor and load cannot be separated easily and rotary	General
Static self-learning of synchronous motor	self-learning is not allowed.	
F01.34=2 Rotary self-learning of asynchronous motor F01.34=12 Rotary self-learning of synchronous motor	It is applied when the motor and load can be separated easily. Before operation, the motor shaft should be separated from the load. The motor under load must not be put into rotary self-learning.	Optimal

 Prior to self-identification, make sure that the motor is stopped; otherwise, self-identification cannot be performed properly.

5.7.1 Parameter identification steps

- Where the motor and load can be separated, the mechanical load and motor should be completely separated in the power-off status.
- After the power-on, set the command source of the inverter to keyboard control (F00.02=0).
- Enter the nameplate parameters of the motor accurately.

Motor	Corresponding Parameter
Motor 1	F01.00 Motor type F01.01 Rated power of electric motor F01.02 Rated voltage of motor F01.03 Rated current of motor F01.04 Rated frequency of motor F01.05 Rated speed F01.06 Motor winding connection
Motor 2	F14.00 Motor type F14.01 Rated power of electric motor F14.02 Rated voltage of motor F14.03 Rated current of motor F14.04 Rated frequency of motor F14.05 Rated speed F14.06 Motor winding connection

• For the asynchronous motor:

- Set F01.34=1 for confirmation and press the RUN key. The inverter will start the static self-identification of the motor.
- Or, set F01.34=2 and press the RUN key. The inverter will start the rotary self-identification of the motor.
- For the synchronous motor:
- Set F01.34=11 and press the RUN key. The inverter will start the static self-identification of the motor.
- Or, set F01.34=12 and press the RUN key. The inverter will start the rotary self-identification of the motor.
- It takes about two minutes to complete the self-identification of the motor. Then the system will return to the initial power-on status from the "tune" interface.
- If multiple motors are used in parallel, the rated power and rated current input of the motors should be the sum of power and current of these motors.
- If two motors are used alternately, the parameters of the motor 2 in the F14 group need to be set separately, and identified based on F14.34.

Chapter 6 Function Code Table

6.1 Description of Function Code Table

The function codes of the EM730 series inverter (hereinafter referred to as the "function codes") are divided into 22 groups in Table 6-2, and each group contains several function codes. Among them, the F18 group is a monitoring parameter group used to view the inverter status; the F19 group is a protection record group used to view the details of the last three protections; and other groups are parameter setting groups to meet different functional requirements.

F00	Basic function	P69; P136	F01	Parameter group of motor 1	P72; P154
F02	Input terminal function group	P72; P154	F03	Output terminal function group	P80; P173
F04	Start/stop control parameter group	P82; P187	F05	V/F control parameter group	P84; P195
F06	Vector control parameter group	P86; P201	F07	Protection function setting group	P90; P208
F08	Multi-segment speed and simple PLC	P92; P217	F09	PID function group	P98; P227
F10	Communication function group	P101; P241	F11	User-selected parameter group	P102; P246
F12	Keyboard and display function group	P104; P248	F13	Torque control parameter group	P107; P254
F14	Parameter group of motor 2	P108; P260	F15	Auxiliary function group	P114; P263
F16	Customization function group	P117; P277	F17	Virtual I/O function group	P119; P284
F18	Monitoring parameter group	P122; P288	F19	Protection record group	P124; P292
F27	Winding/unwinding application macro parameter group	P126; P290	F45	Modbus free mapping parameter group	P129; P306

Table 6-2 Introduction to Function Code Groups

★ Some parameters of the current series are reserved, and their readings are 0. Some options of parameters are reserved and settable, but this may result in abnormal operation of the inverter. Please avoid misuse of such parameters.

The table below provides the details of the function code table.

Function	F00.00 to	00.00 to F99.99: function code number					
code							
Function	Full name of the function code. "Reserved" means that the corresponding						
code name	function code is temporarily reserved and has no practical meaning. Brief description of the function code. It is mainly divided into the following						
	Brief des	criptior	n of the	e function co	ode. It is mainly o	livided int	o the following
	three type	es:					
Parameter	Integr	ral I	oarame	ter selectior	tegral function co or meaning.	•	
description Quantifier The ones, tens, hundreds, thousands and tens represent one option or the current meaning o code.							
	Bina	rt/		inary bit rep unction cod	resents one optio e.	n or the cu	urrent meaning
	Metric units of the function code. The units and abbreviations are as follows:					are as follows:	
	Hz	He	rtz	kW	kilowatt	us	Microsecond
	kHz	Kilohertz		kWh	Kilowatt-hour*	ms	Millisecond
	%	Perc	ent*	MWh	Megawatt hour	S	Second
Unit	V	Vo	olt	mΩ	Milliohm	min	min
	Α	An	np	mH	Millihenry	h	h
	rpm	rp	m	°C	°C	m	m
	★: %: The benchmarks are different for physical quantities; kWh: Kilowatt hour, commonly known as the degree.						
					very, or values a	-	eter restoration
			•		ed by the followin	•	
	Nun	nber	Refe	er to each p	ower segment. Tl	ne function	n code is set to
Default	(e.g. 5	50.00)	the	current valu	e by default.		
setting	Depend	•		default set	ing of this functi	on code v	aries based on
	the mot	or type	-	power segm			
	XX	ΚX			ing of this functi	ion code v	aries based on
		_	the	power segm	ents and batches.		

User Manual of EM730 Series Inverter

	Change attribute of the function code (permission and condition of change), as described below:				
	•	Changeable in running: The current function code can be			
Attribute	ite O	changed in any status. Non-changeable in running: The current function code can be			
		changed except in the running status.			
	×	Read-only: The current function code cannot be changed in			
	^	any status.			

6.2 Table of functional parameters

Function code	Function code name	Parameter description	Unit	Default setting	F
F00	Basic function para	imeter group			
F00.00	Reserved				
F00.01	Drive control mode	0: v/f control (VVF)		0	
F00.01	of motor 1	1: speed sensorless vector control (SVC)		0	0
	Options of	0: keyboard control (LOC/REM indicator: ON) 1: terminal control (LOC/REM indicator:			
F00.02	command source	OFF) 2: communication control (LOC/REM		0	0
		indicator: flicker)			
F00.03	Options of terminal control mode	0: terminal RUN (running) and F/R (forward/reverse) 1: terminal RUN (forward) and F/R (reverse) 2: terminal RUN (forward), Xi (stop) and F/R (reverse) 3: terminal RUN (running), Xi (stop) and F/R (forward/reverse)		0	0
F00.04	Options of main frequency source A	 0: digital frequency setting F00.07 1: AI1 2: AI2 3: reserved 4: reserved 5: high frequency pulse input (X5) 6: main frequency communication setting (percentage) 7: main frequency communication setting (direct frequency) 8: digital potentiometer setting 		8	0
F00.05	Options of auxiliary frequency	0: digital frequency setting F00.07 1: AI1		0	0

User Manual of EM730 Series Inverter

	source B	2: AI2			
		3: reserved			
		4: reserved			
		5: high frequency pulse input (X5)			
		6: auxiliary frequency communication setting			
		(percentage)			
		7: auxiliary frequency communication setting			
		(direct frequency)			
		8: digital potentiometer setting			
		9: reserved			
		10: process PID			
		11: simple PLC			
		0: main frequency source A			
		1: auxiliary frequency source B			
		2: main and auxiliary operation results			
		3: switching between main frequency source			
		A and auxiliary frequency source B			
F00.06	Options of	4: switching between main frequency source		0	0
frequency so	frequency source	A and main and auxiliary operation results		Ū	
		5: switching between auxiliary frequency			
		source B and main and auxiliary operation			
		results			
		6: auxiliary frequency source B + feedforward			
		calculation (winding application)			
F00.07	Digital frequency setting	0.00 to maximum frequency F00.16	Hz	50.00	•
		0: main frequency source A + auxiliary			
		frequency source B			
		1: main frequency source A - auxiliary			
		frequency source B			
		2: larger value of main and auxiliary			
	Options of main	frequency sources			
F00.08	and auxiliary	3: smaller value of main and auxiliary		0	0
1'00.08	operation	frequency sources		0	
	operation	4: main frequency source A - auxiliary			
		frequency source B, the operation result is			
		greater than or equal to zero			
		5: main frequency source A + auxiliary			
		frequency source B, the operation result is			
i i		greater than or equal to zero			
	Reference options	0: relative to be maximum frequency			
F00.09	Reference options of auxiliary frequency source B	0: relative to he maximum frequency 1: relative to main frequency source A		0	0

User Manual of EM730 Series Inverter

	in main and				
	auxiliary operation				
	Gain of main				
F00.10	frequency source	0.0~300.0	%	100.0	•
	Gain of auxiliary				
F00.11	frequency source	0.0~300.0	%	100.0	•
	Synthetic gain of				
F00.12	main and auxiliary	0.0~300.0	%	100.0	
1 00.12	frequency sources	0.0 500.0		100.0	-
F00.13	Analog adjustment of synthetic frequency	 0: synthetic frequency of main and auxiliary channels 1: AI1 * synthetic frequency of main and auxiliary channels 2: AI2 * synthetic frequency of main and auxiliary channels 3: reserved 4: reserved 5: high frequency pulse (PULSE) * synthetic frequency of main and auxiliary channels 		0	0
F00.14	Acceleration time 1	0.00 ~ 650.00 (F15.13=0) 0.0 ~ 6500.0 (F15.13=1) 0 ~ 65000 (F15.13=2)	s	15.00	•
F00.15	Deceleration time 1	0.00 ~ 650.00 (F15.13=0) 0.0 ~ 6500.0 (F15.13=1) 0 ~ 65000 (F15.13=2)	s	15.00	•
F00.16	Maximum frequency	1.00~600.00/1.0~3000.0	Hz	50.00	0
F00.17	Options of upper frequency limit control	0: set by F00.18 1: AI1 2: AI2 3: reserved 4: reserved 5: high frequency pulse input (X5) 6: communication setting (percentage) 7: communication setting (direct frequency)		0	0
F00.18	Upper frequency limit	lower frequency limit F00.19 to maximum frequency F00.16	Hz	50.00	•
F00.19	Lower frequency limit	0.00 to upper frequency limit F00.18	Hz	0.00	•
F00.20	Running direction	0: consistent direction 1: opposite direction		0	•
F00.21	Reverse control	0: allow forward/reverse running 1: prohibit reversing		0	0

User Manual of EM730 Series Inverter

	Duration of				
F00.22	forward and reverse dead zone	0.00~650.00	s	0.00	•
F00.23	Carrier frequency	$1.0 \sim 16.0$ (rated power of the inverter: 0.75-4.00kW) $1.0 \sim 10.0$ (rated power of the inverter: $5.50 \sim 7.50$ kW) $1.0 \sim 8.0$ (rated power of inverter 11.00 - 45.00kW) $1.0 \sim 4.0$ (rated power of inverter 55.00 - 90.00kW) $1.0 \sim 3.0$ (rated power of inverter: 110.00 and above)	kHz	4.0 (0.75 and below) /2.0	•
F00.24	Automatic adjustment of carrier frequency	0: invalid 1: valid 1 2: valid 2		1	0
F00.25	Noise suppression of carrier frequency	ustment of rier frequency1: valid 1 2: valid 2 0: invalid 1: noise suppression of carrier frequency mode 1 2: noise suppression of carrier frequency mode 2ise suppression hth $1 \sim 20$ 0: invalid 0 : invalid 0 : oise suppression of carrier frequency mode 20: ise suppression th $0 \sim 10$: invalid 0 ~ 10 : noise suppression of carrier frequency mode 1			0
F00.26	Noise suppression width	1~20	Hz	1	•
F00.27	Noise suppression intensity	0~10: noise suppression of carrier frequency	%	2	•
F00.28	Options of motor parameter group	0: parameter group of motor 1 1: parameter group of motor 2		0	0
F00.29	User password	0~65535		0	0
F00.31	Frequency resolution	0: 0.01Hz 1: 0.1Hz (speed unit: 10rpm)		0	0
F00.35	Power supply voltage selection	0: 380V 1: 440V		0	0
F01	Parameter group o				
F01.00	Motor type	0: ordinary asynchronous motor 1: variable-frequency asynchronous motor 2: permanent magnet synchronous motor		0	0
F01.01	Rated power of electric motor	0.10~650.00	kW	Depend ing on the motor	0

				type	
F01.02	Rated voltage of motor	50~2000	V	Depend ing on the motor type	0
F01.03	Rated current of motor	1~ 60000 (rated power of motor: ≤ 75 kW) 0.1~6000.0 (rated power of motor: > 75kW)	А	Depend ing on the motor type	0
F01.04	Rated frequency of motor	0.01~600.00	Hz	Depend ing on the motor type	0
F01.05	Rated speed	1~60000	rpm	Depend ing on the motor type	0
F01.06	Motor winding connection	0:Υ 1:Δ		Depend ing on the motor type	0
F01.07	Rated power factor of motor	0.600~1.000		Depend ing on the motor type	0
F01.08	Motor efficiency	30.0~100.0	%	Depend ing on the motor type	0
F01.09	Stator resistance of asynchronous motor	1~ 60000 (rated power of motor: ≤ 75 kW) 0.1~6000.0 (rated power of motor: > 75kW)	mΩ	Depend ing on the motor type	0

User Manual of EM730 Series Inverter

F01.10	Rotor resistance of asynchronous motor	1~ 60000 (rated power of motor: ≤ 75 kW) 0.1~6000.0 (rated power of motor: > 75kW)	mΩ	Depend ing on the motor type	0
F01.11	Leakage inductance of asynchronous motor	0.01 to 600.00 (rated power of motor: ≤ 75 kW) 0.001 to 60.000 (rated power of motor: > 75 kW)	mH	Depend ing on the motor type	0
F01.12	Mutual inductance of asynchronous motor	0.1 to 6000.0 (rated power of motor: ≤ 75 kW) 0.01 to 600.00 (rated power of motor: > 75 kW)	mH	Depen- ding on the motor type	0
F01.13	No-load excitation current of asynchronous motor	0.01 to 600.00 (rated power of motor: ≤ 75 kW) 0.1 to 6000.0 (rated power of motor: > 75 kW)	А	Depend ing on the motor type	0
F01.14	Flux weakening coefficient 1 of asynchronous motor	10.00 ~ 100.00	%	87.00	0
F01.15	Flux weakening coefficient 2 of asynchronous motor	10.00 ~ 100.00	%	80.00	0
F01.16	Flux weakening coefficient 3 of asynchronous motor	10.00 ~ 100.00	%	75.00	0
F01.17	Flux weakening coefficient 4 of asynchronous motor	10.00 ~ 100.00	%	72.00	0
F01.18	Flux weakening coefficient 5 of asynchronous motor	10.00 ~ 100.00	%	70.00	0
F01.19	Stator resistance of synchronous motor	1~ 60000 (rated power of motor: ≤75kW) 0.1 to 6000.0 (rated power of motor: > 75 kW)	mΩ	Depend ing on the	0

				motor	
				type	
F01.20	d-axis inductance of synchronous motor	0.01 to 600.00 (rated power of motor: ≤ 75 kW) 0.001 to 60.000 (rated power of motor: > 75 kW)	mH	Depend ing on the motor type	0
F01.21	q-axis inductance of synchronous motor	0.01~600.00 (rated power of motor: ≤ 75 kW) 0.001~60.000 (rated power of motor: > 75kW)	mH	Depend ing on the motor type	0
F01.22	Counter electromotive force of synchronous motor	$10.0 \sim 2000.0$ (counter electromotive force of rated speed)	v	Depend ing on the motor type	0
F01.23	Initial electrical angle of synchronous motor	$0.0 \sim 359.9$ (valid for synchronous motor)			0
F01.34	Motor parameter self-learning	 00: no operation 01: static self-learning of asynchronous motor 02: rotation self-learning of asynchronous motor 03: inertia self-learning of asynchronous motor 11: static self-learning of synchronous motor 12: rotary self-learning of synchronous motor 13: encoder self-learning of synchronous motor 		00	0
F02	Input terminal fun	ction group			
F02.00	Options of X1 digital input function	0: no function 1: terminal running (RUN) 2: running direction (F/R)		1	0
F02.01	Options of X2 digital input function	 3: stop control in three-line operation 4: forward jog (FJOG) 5: reverse jog (RJOG) 		2	0
F02.02	Options of X3 digital input function	6: terminal UP 7: terminal DOWN 8: clear UP/DOWN offset		11	0
F02.03	Options of X4 digital input function	9: free stop 10: reset protection 11: multi-segment speed terminal 1		12	0

User Manual of EM730 Series Inverter

F02.04	Options of X5 digital input	12: multi-segment speed terminal 2 13: multi-segment speed terminal 3	13	0
	function	14: multi-segment speed terminal 4		
	Options of AI1	15: multi-segment PID terminal 1		
F02.07	digital input	16: multi-segment PID terminal 2	0	0
	function	17: multi-segment torque terminal 1		
		18: multi-segment torque terminal 2		
		19: acceleration and deceleration time		
		terminal 1		
		20: acceleration and deceleration time		
		terminal 2		
		21: acceleration and deceleration prohibition		
		22: operation pause		
		23: external protection input		
		24: switching of RUN command to keyboard		
		25: switching of RUN command to		
		communication		
		26: frequency source switching		
		27: clearing of regular running time		
		28: speed control/torque control switching		
		29: torque control prohibition30: motor 1/motor 2 switching		
		31: resetting of simple PLC status (running		
		from the first segment, with the running time		
	Options of AI2	cleared)		
F02.08	digital input	32: simple PLC time pause (keep running at	0	0
	function	current segment)		
		33: reserved		
		34: counter input (≤250Hz)		
		35: high-speed count input (≤100kHz, only		
		valid for X5)		
		36: count clearing		
		37: length counter input (≤250Hz)		
		38: High-speed length counting input		
		$(\leq 100$ kHz, only valid for X5)		
		39: reset length (clear by meter)		
		40: pulse input (≤ 100 kHz, only valid for X5)		
		41: process PID pause		
		42: process PID integral pause		
		43: PID parameter switching		
		44: PID positive/negative switching		
		45: stop and DC braking		
		46: DC braking at stop		
		47: immediate DC braking		

	iluar of Elvi/50 Series				
		48: fastest deceleration to stop			
		49: reserved			
		50: external stop			
		51: switching of main frequency source to			
		digital frequency setting			
		52: switching of main frequency source to AI1			
		53: switching of main frequency source to AI2			
		54: reserved			
		55: switching of main frequency source to			
		high-frequency pulse input			
		56: switching of main frequency source to			
		communication setting			
		57: inverter enabling			
		58: prohibit reversing and prohibit enabling			
		68: disable reversal			
		69: prohibit reversing			
		70: input terminal expansion			
		121: external material cutoff signal			
		122: wiring detection signal			
		123: brake reset terminal			
		D7 D6 D5 D4 D3 D2 D1 D0			
	Positive/negative	* * * X5 X4 X3 X2 X1			
F02.15	logic 1 of digital	0: positive logic, valid in the closed		00000	0
	input terminal	state/invalid in the open state			
	1	1: negative logic, invalid in the closed			
		state/valid in the open state			
		D7 D6 D5 D4 D3 D2 D1 D0			
	Positive/negative	AIZ AII			
F02.16	logic 2 of digital	0: positive logic, valid in the closed		00	0
	input terminal	state/invalid in the open state			
		1: negative logic, invalid in the closed			
	D '14 ' 4' 0	state/valid in the open state			
E02 17	Filtering times of			2	
F02.17	digital input	0~100, 0: no filtering; n: sampling every n ms		2	0
E02.10	terminal	0.000.20.000		0.000	
F02.18	X1 valid delay time	0.000~30.000	S	0.000	•
F02.19	X1 invalid delay	0.000~30.000	s	0.000	•
F02.20	time X2 valid delay time	0.000~30.000	s	0.000	•
F02.21	X2 invalid delay	0.000~30.000	s	0.000	-
	time		_		
F02.22	X3 valid delay time	0.000~30.000	S	0.000	•

F02.23	X3 invalid delay time	0.000~30.000	S	0.000	•
F02.24	X4 valid delay time	0.000~30.000	s	0.000	•
F02.25	X4 invalid delay time	0.000~30.000	s	0.000	•
F02.26	Minimum input pulse frequency	0.00 to maximum input pulse frequency F02.28	kHz	0.00	•
F02.27	Minimum input setting	-100.0 ~ +100.0	%	0.0	•
F02.28	Maximum input pulse frequency	0.01~100.00	kHz	50.00	•
F02.29	Maximum input setting	-100.0 ~ +100.0	%	100.0	•
F02.30	Pulse input filtering time	0.00 ~ 10.00	s	0.10	•
F02.31	Options of analog input function	Ones place: AI1 0: analog input 1: digital input (0 below 1V, 1 above 3V, the same as last time under 1-3V) Tens place: AI2 0: analog input 1: digital input (the same as above)		00B	0
F02.32	Options of analog input curve	Ones place: Options of AI1 curve 0: curve 1 1: curve 2 2: curve 3 3: curve 4 Tens place: AI2 curve selection 0: curve 1 1: curve 2 2: curve 3 3: curve 4 Tens place: AI2 curve selection 0: curve 1 1: curve 2 2: curve 3 3: curve 4		10	0
F02.33	Minimum input of curve 1	-10 ~ F02.35	V	0.10	•
F02.34	Minimum input setting of curve 1	-100.0 ~ +100.0	%	0.0	•

User Manual of EM730 Series Inverter

Maximum input of curve 1	-10~10.00V	V	9.90	•
Maximum input setting of curve 1	-100.0~+100.0	%	100.0	•
Minimum input of curve 2	-10.00V~F02.39	V	0.10	•
setting of curve 2	-100.0 ~ +100.0	%	0.0	•
curve 2	F02.37~10.00V	V	9.90	•
setting of curve 2	-100.0 ~ +100.0	%	100.0	•
curve 3	-10.00V ~ F02.43	V	0.10	•
setting of curve 3	-100.0 ~ +100.0	%	0.0	•
point 1 of curve 3	F02.41 ~ F02.45	V	2.50	•
inflection point 1 of curve 3	-100.0 ~ +100.0	%	25.0	•
point 2 of curve 3	F02.43 ~ F02.47	V	7.50	•
	-100.0 ~ +100.0	%	75.0	•
Maximum input of curve 3	F02.45 ~ 10.00	V	9.90	•
Maximum input setting of curve 3	-100.0 ~ +100.0	%	100.0	•
Minimum input of curve 4	-10.00 ~ F02.51	V	-9.90	•
setting of curve 4	-100.0 ~ +100.0	%	-100.0	•
Input of inflection point 1 of curve 4	F02.49 ~ F02.53	V	-5.00	•
inflection point 1 of curve 4	-100.0 ~ +100.0	%	-50.0	•
Input of inflection point 2 of curve 4	F02.51 ~ F02.55	V	5.00	•
Input setting of inflection point 2 of	-100.0 ~ +100.0	%	50.0	•
	curve 1 Maximum input setting of curve 1 Minimum input of curve 2 Minimum input of curve 2 Maximum input of curve 2 Maximum input of curve 2 Minimum input of curve 3 Minimum input of curve 3 Input of curve 3 Input of inflection point 1 of curve 3 Input of inflection point 2 of curve 3 Input setting of inflection point 1 of curve 3 Maximum input setting of inflection point 2 of curve 3 Maximum input of curve 3 Maximum input of curve 3 Maximum input of curve 3 Maximum input setting of curve 4 Minimum input setting of curve 4 Input of inflection point 1 of curve 4 Input of inflection point 1 of curve 4 Input setting of inflection point 1 of curve 4 Input setting of inflection point 1 of curve 4 Input of inflection point 2 of curve 4 Input setting of inflection point 1 of curve 4 Input setting of inflection point 1 of curve 4 Input setting of	curve 1 $-10\times10.00^{\circ}$ Maximum input setting of curve 1 $-100.0 \times +100.0$ Minimum input of curve 2 $-100.0 \times +100.0$ Minimum input of curve 2 $-100.0 \times +100.0$ Maximum input of curve 2 $F02.37 \sim 10.00^{\circ}$ Maximum input setting of curve 2 $-100.0 \times +100.0$ Maximum input setting of curve 2 $-100.0 \times +100.0$ Minimum input setting of curve 3 $-100.0 \times +100.0$ Minimum input setting of curve 3 $-100.0 \times +100.0$ Input of inflection point 1 of curve 3 $F02.41 \sim F02.43$ Input of inflection point 2 of curve 3 $F02.43 \sim F02.47$ Input setting of inflection point 2 of curve 3 $F02.43 \sim F02.47$ Maximum input setting of curve 3 $F02.45 \sim 10.00$ Maximum input setting of curve 3 $-100.0 \sim +100.0$ Maximum input setting of curve 3 $-100.0 \sim +100.0$ Maximum input setting of curve 3 $-100.0 \sim +100.0$ Maximum input setting of curve 4 $-100.0 \sim +100.0$ Minimum input setting of curve 4 $-100.0 \sim +100.0$ Minimum input setting of curve 4 $-100.0 \sim +100.0$ Minimum input setting of curve 4 $-100.0 \sim +100.0$ Input of inflection point 1 of curve 4 $F02.49 \sim F02.53$ Input setting of inflection point 1 of curve 4 $-100.0 \sim +100.0$ Input setting of inflection point 1 of inflection point 2 of curve 4 $F02.51 \sim F02.55$ Input setting of inflection point 2 of curve 4 $F02.51 \sim F02.55$	curve 1 $-10-10.00V$ VMaximum input setting of curve 1 $-100.0 \sim +100.0$ %Minimum input of curve 2 $-100.0 \sim +100.0$ %Minimum input of curve 2 $-100.0 \sim +100.0$ %Maximum input of curve 2 $F02.37 \sim 10.00V$ VMaximum input of curve 3 $-100.0 \sim +100.0$ %Minimum input of curve 3 $-10.00 \sim +100.0$ %Minimum input setting of curve 3 $-10.00 \sim +100.0$ %Input of inflection point 1 of curve 3 $-100.0 \sim +100.0$ %Input of inflection point 2 of curve 3 $F02.41 \sim F02.45$ VInput of inflection point 2 of curve 3 $F02.43 \sim F02.47$ VInput of inflection point 2 of curve 3 $F02.45 \sim 10.00$ %Maximum input of curve 3 $-100.0 \sim +100.0$ %Maximum input of curve 4 $-100.0 \sim +100.0$ %Minimum input of curve 3 $-100.0 \sim +100.0$ %Minimum input of curve 4 $-100.0 \sim +100.0$ %Minimum input of curve 4 $-100.0 \sim +100.0$ %Minimum input of curve 4 $-100.0 \sim +100.0$ %Minimum input setting of curve 4 $-100.0 \sim +100.0$ %Input setting of inflection point 1 of curve 4 $-100.0 \sim +100.0$ %Input of inflection point 1 of curve 4 $-100.0 \sim +100.0$ %Input setting of inflection point 1 of curve 4 $-100.0 \sim +100.0$ %Input setting of inflection point 1 of curve 4 $-100.0 \sim +100.0$ % <t< td=""><td>curve 1-10-10.00VV9.90Maximum input setting of curve 1-100.0~+100.0%100.0Minimum input setting of curve 2-100.0~+100.0%0.0Maximum input setting of curve 2-100.0~+100.0%0.0Maximum input setting of curve 2-100.0~+100.0%0.0Maximum input setting of curve 2-100.0~+100.0%100.0Maximum input setting of curve 2-100.0~+100.0%100.0Minimum input setting of curve 3-10.00~+100.0%0.0Minimum input setting of curve 3-100.0~+100.0%0.0Input of inflection point 1 of curve 3F02.41~F02.45V2.50Input of inflection point 2 of curve 3F02.47V7.50Input of inflection point 2 of curve 3F02.47V9.90Maximum input setting of curve 3-100.0~+100.0%75.0Maximum input setting of curve 3-100.0~+100.0%9.90Maximum input setting of curve 3-100.0~+100.0%9.90Maximum input setting of curve 4-100.0~+100.0%100.0Minimum input setting of curve 4-100.0~+100.0%-100.0Input setting of curve 4-100.0~+100.0%-100.0Minimum input setting of curve 4-100.0~+100.0%-50.0Input of inflection point 1 of curve 4F02.51~F02.55V5.00Input of inflection point 1 of curve 4F02.51~F02.55V</td></t<>	curve 1-10-10.00VV9.90Maximum input setting of curve 1-100.0~+100.0%100.0Minimum input setting of curve 2-100.0~+100.0%0.0Maximum input setting of curve 2-100.0~+100.0%0.0Maximum input setting of curve 2-100.0~+100.0%0.0Maximum input setting of curve 2-100.0~+100.0%100.0Maximum input setting of curve 2-100.0~+100.0%100.0Minimum input setting of curve 3-10.00~+100.0%0.0Minimum input setting of curve 3-100.0~+100.0%0.0Input of inflection point 1 of curve 3F02.41~F02.45V2.50Input of inflection point 2 of curve 3F02.47V7.50Input of inflection point 2 of curve 3F02.47V9.90Maximum input setting of curve 3-100.0~+100.0%75.0Maximum input setting of curve 3-100.0~+100.0%9.90Maximum input setting of curve 3-100.0~+100.0%9.90Maximum input setting of curve 4-100.0~+100.0%100.0Minimum input setting of curve 4-100.0~+100.0%-100.0Input setting of curve 4-100.0~+100.0%-100.0Minimum input setting of curve 4-100.0~+100.0%-50.0Input of inflection point 1 of curve 4F02.51~F02.55V5.00Input of inflection point 1 of curve 4F02.51~F02.55V

User Manual of EM730 Series Inverter

	curve 4				
F02.55	Maximum input of curve 4	F02.53 ~ 10.00	v	9.90	•
F02.56	Maximum input setting of curve 4	-100.0 ~ +100.0	%	100.0	•
F02.57	AI1 filtering time	$0.00 \sim 10.00$	s	0.10	•
F02.58	AI2 filtering time	0.00~10.00	s	0.10	•
F02.60	Reserved				
F02.61	AD hysteresis code	2~50		2	0
F02.62	Selection of analog input AI1 type	0: 0~10V 3: -10~10V 4: 0~5V		0	0
F02.63	Selection of analog input AI2 type	0: 0~10V 1: 4~20mA 2: 0~20mA 4: 0~5V		0	
F02.66	Selection of AI2 current input impedance	0: 500Ω 1: 250Ω		0	0
F03	Output terminal fu	inction group			
	Options of Y1	0: no output		1	0
	output function	1: inverter running (RUN)		1	
F03.02	Options of R1 output function (EA-EB-EC)	 2: up to output frequency (FAR) 3: output frequency detection FDT1 4: output frequency detection FDT2 5: reverse running (REV) 6: jog 7: inverter protection 8: inverter ready to run (READY) 9: reach the upper frequency limit 10: reach the lower frequency limit 11: valid current limit 12: valid overvoltage stall 13: complete simple PLC cycle 14: reach the set count value 15: reach the specified count value 16: length reached (in meters) 17: motor overload pre-alarm 18: inverter overheat pre-alarm 19: reach the lower limit of PID feedback 20: reach the lower limit of PID feedback 21: analog level detection ADT1 22: analog level detection ADT2 		7	0

										-		-
			nderv									
			p to tl									
		27: z	ero-sp	peed	runni	ng						
			ff-loa									
			LC o									
			rake o									
		68: n	nateria	al cu	toff d	etectio	on out	put				
		69: F	9: FDT1 lower limit (pulse)									
						it (pul						
		71: F	DT1	lowe	r lim	it (pul	se, inv	alid ir	n JOG)			
		72: F	DT2	lowe	r lim	it (pul	se, inv	alid ir	n JOG)			
		73: o	utput	over								
		D7	D6	D5	D4	D3	D2	D1	D0			
502.05	Options of output	*	*	*	*	*	R1	*	Y1	1	0.40	0
F03.05	signal type	0: level							1	0*0		
		1: sir	ngle p	ulse								
		D7	D6	D5	D4	D3	D2	D1	D0			
		*	*	*	*	*	R1	*	Y1	1		
	Positive/negative	0. 20	aitivo	1000	0 1/01	id in t		and	11	-		
F03.06	logic of digital					pen st		seu			0*0	0
	output							closed				
						en state		cioseu	L			
		D7	D6	D5		D3		D1	D0			
	Output status	D/	D0				D2 EDT	D1	D0	-		
502.00		*	*	*	RE V	$\frac{FD1}{2}$		FAR	RUN		00000	
F03.08	control in jog	0				2	1			-	00000	0
	, , ,	0: valid in jogging										
		1: invalid in jogging										
F03.09	Y1 valid delay time	0.000)~30	.000						s	0.000	•
F03.10	Y1 invalid delay	0.000)~30	.000						s	0.000	•
	time											
F03.13	R1 valid delay time	0.000)~30	.000						s	0.000	•
F03.14	R1 invalid delay time	0.000)~30	.000						s	0.000	•
E02 17	Single pulse time of	0.001									0.250	
F03.17	Y1 output	0.001	0.001~30.000							s	0.250	•
F03.19	Single pulse time of R1 output	0.001	$1 \sim 30$.000						s	0.250	•
		0: ru	nning	freq	uency	/ (abso	olute v	/alue)				
E02 21	Options of analog 1: set frequency (absolute value)											
F03.21	output M1	2: output torque (absolute value)						0	0			
		3: set torque (absolute value)										
	•			``````````````````````````````````````								

												-
		4: out	tput cu	ırrent								
			tput vo									
		6: bu	s volta	ige								
		7: out	tput po	ower								
		8: A	I1									
		9: A	12									
		12: hi	igh-fre	equend	cy puls	se inp	ut (wit	h 100	%			
		corre	spond	ing to	100.0	0kHz)						
		13: co	ommu	nicatio	on sett	ing 1						
		14: co	ount v	alue								
		15: le	ngth v	value								
		16: P	ID out	tput								
		18: P	ID fee	dback								
		19: P	ID set	ting								
		30: co	ommu	nicatio	on sett	ing 2						
F03.27	M1 output bias	-100.	0~10	0.0		%	0.0	•				
F03.28	M1 output gain	-10.0	-10.000~10.000								1.000	•
	Control logic 03.31 options of PLC	D7	D6	D5	D4	D3	D2	D1	D0			
F03.31		*	*	*	*	*	R1	*	Y1		00 000	•
	output terminal	0: no output							1	000		
		1: out		L								
		0:0~	•									-
F03.34	Selection of analog		20mA								0	0
1 05.54	output M1 type		20mA								0	
F04	Start/stop control p									1		
		0.4:	ect sta	wt								1
F04.00	Start-up method	-									0	0
		1: sta	rt of s	peed t	rackin	g						
F04.01	Start frequency	0.00 -	~ 10.0	0						Hz	0.00	0
F04.02	Start frequency hold time	0.00 -	0.00 ~ 60.00, 0.00 is invalid								0.00	0
F04.03	Starting current of DC braking	$0.0\sim$	100.0	(100.	0 = Ra	nted cu	urrent	of mo	tor)	%	100.0	0
F04.04	Starting time of DC braking	0.00~	~30.0	0 0.00	: inva	lid				s	0.00	0

User Manual of EM730 Series Inverter

F04.06	Pre-excitation current	$50.0 \sim 500.0 \ (100.0 = no-load \ current)$	%	100.0	0
F04.07	Pre-excitation time	0.00 ~ 10.00	s	0.10	0
F04.08	Speed tracking mode	Ones place: tracking start frequency 0: maximum frequency 1: stop frequency 2: power frequency Tens place: selection of search direction 0: search only in command direction 1: search in the opposite direction if the speed cannot be found in the command direction		0	0
F04.10	Deceleration time of speed tracking	0.1 ~ 20.0	s	2.0	0
F04.11	Speed tracking current	$30.0 \sim 150.0 (100.0 = rated current of inverter)$	%	50.0	0
F04.12	Speed tracking compensation gain	0.00 ~ 10.00		1.00	0
F04.14	Acceleration and deceleration mode	 0: linear acceleration and deceleration 1: acceleration and deceleration of continuous S curve 2: acceleration and deceleration of intermittent S curve 		0	0
F04.15	Starting time of S curve in acceleration	0.00~30.00(F15.13=0) 0.0~300.0(F15.13=1) 0~3000(F15.13=2)	s	1.00	•
F04.16	Ending time of S curve in acceleration	0.00~30.00(F15.13=0) 0.0~300.0(F15.13=1) 0~3000(F15.13=2)	s	1.00	•
F04.17	Starting time of S curve in deceleration	0.00~30.00(F15.13=0) 0.0~300.0(F15.13=1) 0~3000(F15.13=2)	S	1.00	•
F04.18	Ending time of S curve in deceleration	0.00~30.00(F15.13=0) 0.0~300.0(F15.13=1) 0~3000(F15.13=2)	s	1.00	•
F04.19	Stop mode	0: slow down to stop 1: free stop		0	0
F04.20	Starting frequency of DC braking in	0.00Hz to maximum frequency F00.16	Hz	0.00	0

User Manual of EM730 Series Inverter

			-		
	stop				
F04.21	DC braking current in stop	$0.0 \sim 100.0 \ (100.0 = \text{Rated current of motor})$	%	50.0%	0
F04.22	DC braking time in stop	0.00~30.00 0.00: invalid	s	0.00	0
F04.23	Demagnetization time for DC braking in stop	0.00 ~ 30.00	s	0.50	0
F04.24	Flux braking gain	100~150 (100: no flux braking)		100	0
F04.26	Start mode after protection/free stop	0: start according to F04.00 setting mode 1: start of speed tracking		0	0
F04.27	Second confirmation of terminal start command	0: Not required for confirmation1: to be confirmed2: Not required for confirmation of mode2(also not required during fault reset)		0	0
F04.28	Lowest effective output frequency	$0.00 \sim 50.00$ (0.00: function invalid)	Hz	0.00	0
F04.29	Zero speed check frequency	0.00 ~ 5.00	Hz	0.25	•
F04.30	Initial magnetic pole search mode of synchronous motor	0: Invalid 1: Mode 1		0	•
F05	V/F control parame	eter group			
F05.00	V/F curve setting	0: straight line V/F 1: multi-point broken line V/F 2: 1.3-power V/F 3: 1.7-power V/F 4: square V/F 5: vf complete separation mode (Ud = 0, Uq = K * t = voltage of separation voltage source) 6: vf semi-separation mode (Ud = 0, Uq = K * t = F/Fe * 2 * voltage of separation voltage source)		0	0
F05.01	Frequency point F1 of multi-point VF	0.00 ~ F05.03	Hz	0.50	•

User Manual of EM730 Series Inverter

•		-			
•	1.0	%	of $0.0 \sim 100.0 \ (100.0 = \text{Rated voltage})$	Voltage point V1 of multi-point VF	F05.02
1	2.00	Hz		Frequency point F2 of multi-point VF	F05.03
•	4.0	%	² of 0.0~100.0	Voltage point V2 of multi-point VF	F05.04
•	5.00	Hz		Frequency point F3 of multi-point VF	F05.05
•	10.0	%	³ of 0.0~100.0	Voltage point V3 of multi-point VF	F05.06
0	0		 4: high-frequency pulse (X5) 5: PID 6: communication setting note: 100% is the rated voltage of the motor. 	Voltage source of VF separation mode	F05.07
•	0.0	%	f $0.0 \sim 100.0 (100.0 = rated voltage of motor)$	Digital setting of VF separation voltage	F05.08
•	2.00	s	ge 0.00 ~ 60.00	Rise time of VF separation voltage	F05.09
•	100.00	%	ain 0.00 ~ 200.00	Compensation gain of V/F stator voltage drop	F05.10
•	100.00	%	$\frac{1}{1000} 0.00 \sim 200.00$	V/F slip compensation gain	F05.11
•	1.00	s	g 0.00 ~ 10.00	V/F slip filtering time	F05.12
•	100		0~10000	Oscillation suppression gain	F05.13
•	55.00	Hz	off 0.00~600.00	Oscillation suppression cutoff frequency	F05.14
•	0.00	Hz	0.00 ~ 10.00	Droop control frequency	F05.15
•	0.00	%	te $0.00 \sim 50.00$	Energy saving rate	F05.16
•	5.00	s	1.00 ~ 60.00	Energy saving action time	F05.17
	0.0 2.00 100.00 100.00 1.00 55.00 0.00 0.00	s % % % Hz Hz %	5: PID 6: communication setting note: 100% is the rated voltage of the motor. f $0.0 \sim 100.0 (100.0 = rated voltage of motor)$ ge $0.00 \sim 60.00$ ain $0.00 \sim 200.00$ ain $0.00 \sim 200.00$ $0.00 \sim 10.00$ $0 \sim 10000$ aff $0.00 \sim 600.00$ $0.00 \sim 10.00$ $0.00 \sim 10.00$ $0.00 \sim 10.00$ $0.00 \sim 50.00$	modeDigital setting of VF separation voltageRise time of VF separation voltageCompensation gain of V/F stator voltage dropV/F slip compensation gainV/F slip compensation gainV/F slip filtering timeOscillation suppression gainOscillation suppression cutoff frequencyDroop control frequencyEnergy saving rateEnergy saving	F05.08 F05.09 F05.10 F05.11 F05.12 F05.13 F05.14 F05.15 F05.16

User Manual of EM730 Series Inverter

F05.18	Flux compensation gain of synchronous motor	0.00~500.00	%	0.00	•
F05.19	Filtering time constant of flux compensation of synchronous motor	0.00 ~ 10.00	s	0.50	•
F05.20	Change rate of VF separate power supply setting	-500.0 ~ +500.0	%	0.0	•
F06	Vector control para	ameter group			
F06.00	Speed proportional gain ASR_P1	0.00 ~ 100.00		12.00	•
F06.01	Speed integral time constant ASR_T1	0.000-30.000 0.000: no integral	s	0.200	•
F06.02	Speed proportional gain ASR_P2	0.00 ~ 100.00		8.00	•
F06.03	Speed integral time constant ASR_T2	0.000-30.000 0.000: no integral	S	0.300	•
F06.04	Switching frequency 1	0.00 to switching frequency 2	Hz	5.00	•
F06.05	Switching frequency 2	Switching frequency 1 to maximum frequency F00.16	Hz	10.00	•
F06.06	No-load current gain	50.0~300.0	%	100.0	•
F06.07	Filtering time constant of speed loop output	0.000 ~ 0.100	s	0.001	•
F06.08	Vector control slip gain	50.00 ~ 200.00	%	100.00	•
F06.09	Upper limit source selection of speed control torque	0: set by F06.10 and F06.11 1: AI1 2: AI2 3: reserved 4: reserved 5: communication setting (percentage)		0	0

User Manual of EM730 Series Inverter

		6: The larger of AI1 and AI2			
		7: The smaller of AI1 and AI2			
F06.10	Upper limit of speed control motor torque	0.0 ~ 250.0	%	165.0	•
F06.11	Upper limit of speed control brake torque	0.0 ~ 250.0	%	165.0	•
F06.12	Excitation current proportional gain ACR-P1	0.00 ~ 100.00		0.50	•
F06.13	Excitation current integral time constant ACR-T1	0.00-600.00 0.00: no integral	ms	10.00	•
F06.14	Torque current proportional gain ACR-P2	0.00 ~ 100.00		0.50	•
F06.15	Torque current integral time constant ACR-T2	0.00 ~ 600.00 0.00: no integral	ms	10.00	•
F06.17	SVC zero-frequency processing	0: braking 1: not processed 2: seal the tube		2	0
F06.18	SVC zero-frequency braking current	$50.0 \sim 400.0$ (100.0 is the no-load current of the motor)	%	100.0	0
F06.20	Voltage feedforward gain	0~100	%	0	•
F06.21	Flux weakening control options	0: invalid 1: direct calculation 2: automatic adjustment		2	0
F06.22	Flux weakening voltage	70.00 ~ 100.00	%	95.00	•
F06.23	Maximum field weakening current of synchronous motor	$0.0 \sim 150.0 (100.0 \text{ is the rated current of the motor})$	%	100.0	•

User Manual of EM730 Series Inverter

			-		
F06.24	Proportional gain of flux weakening regulator	$0.00 \sim 10.00$		0.50	•
F06.25	Integral time of flux weakening regulator	0.01 ~ 60.00	s	2.00	•
F06.26	MTPA control option of synchronous motor	0: invalid 1: valid		1	0
F06.27	Self-learning gain at initial position	0~200	%	100	•
F06.28	Frequency of low frequency band of injection current	$0.00 \sim 100.00$ (100.00 is the rated frequency of the motor)	%	10.00	•
F06.29	Injection current of low frequency band	$0.0 \sim 60.0 (100.0 \text{ is the rated current of the motor})$	%	20.0 40.0-(F 16.00= 2)	•
F06.30	Regulator gain of low frequency band of injection current	0.00 ~ 10.00		0.50	•
F06.31	Regulator integral time of low frequency band of injection current	0.00 ~ 300.00	ms	10.00	•
F06.32	Frequency of high frequency band of injection current	$0.00 \sim 100.00 (100.00 \text{ is the rated frequency})$ of the motor)	%	20.00	•
F06.33	Injection current of high frequency band	$0.0 \sim 30.0 (100.0 \text{ is the rated current of the motor})$	%	8.0	•
F06.34	Regulator gain of high frequency band of injection current	0.00 ~ 10.00		0.50	•
F06.35	Regulator integral time of high frequency band of injection current	0.00 ~ 300.00	ms	10.00	•
F06.36	Magnetic saturation coefficient of synchronous motor	0.00~1.00		0.75	0

User Manual of EM730 Series Inverter

F06.37	Stiffness coefficient of speed loop	0~20		12	•
F06.38	Gain coefficient of sliding mode of synchronous motor	1.00~3.70		3.50	0
F06.39	Error width of sliding mode of synchronous motor	0.005~0.100		0.100	0
F06.40	Amplitude of injected reactive current of synchronous motor	0.0~20.0	%	10.0	0
F06.41	Open-loop low-frequency processing of synchronous motor	0: VF 1: IF 2: IF in start and VF in stop		0	0
F06.42	Open-loop low-frequency processing range of synchronous motor	0.0 ~ 50.0	%	8.0	0
F06.43	IF injection current	$0.0 \sim 600.0$	%	50.0	0
F06.44	Time constant of pull-in current of magnetic pole	0.0 ~ 6000.0	ms	1.0	0
F06.45	Initial lead angle of magnetic pole	0.0 ~ 359.9	o	30.0	0
F06.46	Speed tracking proportional gain of synchronous motor	0.00 ~ 10.00		1.00	0
F06.47	Speed tracking integral gain of synchronous motor	0.00 ~ 10.00		1.00	0
F06.48	Filtering time constant of speed tracking of synchronous motor	0.00 ~ 10.00	ms	0.40	0
F06.49	Speed tracking control intensity of synchronous motor	1.0 ~ 100.0		5.0	0
F06.50	Speed tracking control threshold of	0.00 ~ 10.00		0.20	0

User Manual of EM730 Series Inverter

	synchronous motor											
F06.51	Rise time of injected active current of synchronous motor	0.010	~ 1.0	00						s	0.020	0
F06.76	Low-speed correction factor of stator resistor of asynchronous motor	10.0~	500.0							%	100.0	•
F06.77	Low speed correction factor of rotor resistor of asynchronous motor	10.0~	500.0							%	100.0	•
F06.78	Slip gain switching frequency of asynchronous motor	0.10 ~).10 ~ Fmax						Hz	5.00	0	
F06.82	Udc filtering time constant	0~15	500.0							ms	2.0	•
F07	Protection function	settin	ıg gro	up								
F07.00	Protection shield	E20 0: val 1: shi		E13 tectio protec		*	E04	E07	E08		0*0 0*000	0
F07.01	Motor overload protection gain	0.20 ~	~ 10.0	0							1.00	•
F07.02	Motor overload pre-alarm coefficient	50~1	100							%	80	•
F07.06	Bus voltage control options	functi 0: inv 1: dec 2: dec	on op alid celerat celerat place: alid	tions tion tion to	ntaneo stop oltage		-	-	ions		10	0

User Manual of EM730 Series Inverter

F07.07	Voltage of overvoltage stall control	110.0	~ 150).0 (38	30V, 10	00.0=:	537V)	I		%	131.0 (703V)	0
F07.08	Instantaneous stop/no-stop operating voltage				eous st standa				ery	%	76.0	0
F07.09	Instantaneous stop/no-stop recovery voltage	instar to 10		us stoj	p/no-s	top op	peratir	ıg volt	age	%	86.0	•
F07.10	Check time for instantaneous stop/no-stop recovery voltage		.00 ~ 100.00								0.50	•
F07.11	Current limit control		ralid nit mo nit mo								2	0
F07.12	Current limit level	20.0-1	0.0-180.0(100.0 = the rated current of inverter								150.0	•
F07.13	Quick current limit options): invalid 1: valid								0	0
F07.14	Protection retries	0-20;	0: Dis	sable p	protect	tion re	etry				0	0
F07.15	Options of digital output action in protection retries	0: no 1: act	actior ion	1							0	0
F07.16	Interval of protection retries	0.01 -	~ 30.0	0						s	0.50	•
F07.17	Restoration time of protection retries	0.01 -	~ 30.0	0			_			s	10.00	•
F07 10	Action option of	E08	*	E07	*	E02	E06	E05	E04		0 *0	0
F07.18	protection				on retr				-		*0000	
F07.19	Action option 1 of	E21	E16	E15	E14	E13	*	E08	E07		000	0
107.17	protection		e stop p acco		to sto	p moc	le				00*00	
F07.20	Action option 2 of protection	I	E28	I	E27		*]	E23		00*0	0

User Manual of EM730 Series Inverter

										1		
			e stop p acco		to sto	p moo	de					
F07.21	Options of load loss protection	0: inv 1: val									0	•
F07.22	Load loss detection level	0.0 ~	100.0							%	20.0	•
F07.23	Load loss detection time	0.0~	60.0							s	1.0	•
F07.24	Options of load loss protection action	1: trip	o prote	ection,		accore	ling to status o	•			1	0
F07.25	Motor overspeed detection level	0.0 ~ F00.1		refere	ence: n	naxim	um fro	equend	су	%	20.0	•
F07.26	Motor overspeed detection time	0.0 ~ prote		0.0: d	s	1.0	•					
F07.27	AVR function	0: inv 1: val 2: aut		с		1	0					
F07.28	Stall protection detection time	0.0~6	6000.0	(0.0: 1	10 stal	l prot	ection	detect	tion)	s	0.0	0
F07.29	Stall control intensity	0~1	00							%	20	0
F07.30	Instantaneous stop/no-stop deceleration time	0.00 -	~ 300.	00						s	20.00	0
F07.32	Action option 2 of protection				E16 on retr		E19	E20	*		000 00000	0
F07.36	Action option 3 of	*	*	*	*	*	*	E09	E17		****	0
107.50	protection				on retr						*00	
	Save the initial											
F07.37	voltage during power-off	60.0^	~100.	0						%	76.0	0

User Manual of EM730 Series Inverter

F07.38	Power-on read and	60.0~ 100.0	%	86.0	0
FU/.38	judge the voltage	60.0~100.0	90	80.0	0
	Power-on read				
F07.39	judgment delay	0~100.00	s	5.00	0
	time				
	Steady-state				0
F07.40	undervoltage	5~6000	ms	20	
	judgment delay				
	time				
	Short-circuit the				
F07.42	ground to judge the	0.0~100.0	%	20	0
	setting value of				
	the current				
F08	Multi-segment spee	ed and simple PLC			
F08.00	Multi-segment speed 1	0.00 to maximum frequency F00.16	Hz	0.00	•
F08.01	Multi-segment speed 2	0.00 to maximum frequency F00.16	Hz	5.00	•
F08.02	Multi-segment speed 3	0.00 to maximum frequency F00.16	Hz	10.00	•
F08.03	Multi-segment speed 4	0.00 to maximum frequency F00.16	Hz	15.00	•
F08.04	Multi-segment speed 5	0.00 to maximum frequency F00.16	Hz	20.00	•
F08.05	Multi-segment speed 6	0.00 to maximum frequency F00.16	Hz	25.00	•
F08.06	Multi-segment speed 7	0.00 to maximum frequency F00.16	Hz	30.00	•
F08.07	Multi-segment speed 8	0.00 to maximum frequency F00.16	Hz	35.00	•
F08.08	Multi-segment speed 9	0.00 to maximum frequency F00.16	Hz	40.00	•
F08.09	Multi-speed 10	0.00 to maximum frequency F00.16	Hz	45.00	•

User Manual of EM730 Series Inverter

F08.10	Multi-segment speed 11	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.11	Multi-segment speed 12	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.12	Multi-segment speed 13	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.13	Multi-segment speed 14	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.14	Multi-segment speed 15	0.00 to maximum frequency F00.16	Hz	50.00	•
F08.15	Simple PLC running mode	 0: stop after a single run 1: stop after a limited number of cycles 2: run at the last segment after a limited number of cycles 3: continuous cycles 		0	•
F08.16	Limited number of cycles	1 ~ 10000		1	•
F08.17	Simple PLC memory options	Ones place: stop memory options 0: no memory (from the first segment) 1: memory (from the moment of stop) Tens place: power-down memory options 0: no memory (from the first segment) 1: memory (from the power-down moment)		0	•
F08.18	Simple PLC time unit	0: s (second) 1: min (minute)		0	•
F08.19	Setting of the first segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.20	Running time of the first segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.21	Setting of the second segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options		0	•

	indui of Elvi750 Series				
		0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4			
F08.22	Running time of the second segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.23	Setting of the third segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.24	Running time of the third segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.25	Setting of the fourth segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.26	Running time of the fourth segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.27	Setting of the fifth segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.28	Running time of the fifth segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.29	Setting of the sixth segment	Ones place: running direction options 0: forward 1: reverse		0	•

		Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4			
F08.30	Running time of the sixth segment	$0.0 \sim 6000.0$	s/ min	5.0	•
F08.31	Setting of the seventh segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.32	Running time of the seventh segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.33	Setting of the eighth segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.34	Running time of the eighth segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.35	Setting of the ninth segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.36	Running time of the ninth segment	0.0 ~ 6000.0	s/ min	5.0	•

F08.37	Setting of the tenth segment	gment 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.38	Running time of the tenth segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.39	Setting of the eleventh segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.40	Running time of the eleventh segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.41	Setting of the twelfth segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.42	Running time of the twelfth segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.43	Setting of the thirteenth segment Setting of the Setting of the Settin			0	•

User Manual of EM730 Series Inverter

F08.44	Running time of the thirteenth segment	0.0 ~ 6000.0	s/ min	5.0	•
F08.45	Setting of the fourteenth segment	Dues place: running direction options Dues place: running direction options Dues place: acceleration and deceleration time options Dues place: acceleration and deceleration time 1 Dues collection and deceleration time 1 Dues collection and deceleration time 1 Dues collection and deceleration time 2 Dues collection and deceleration time 3 Dues collection and deceleration time 4		0	•
F08.46	Running time of the fourteenth segment	$0.0 \sim 6000.0$	s/ min	5.0	•
F08.47	Setting of the fifteenth segment	Ones place: running direction options 0: forward 1: reverse Tens place: acceleration and deceleration time options 0: acceleration and deceleration time 1 1: acceleration and deceleration time 2 2: acceleration and deceleration time 3 3: acceleration and deceleration time 4		0	•
F08.48	Running time of the fifteenth segment	0.0 ~ 6000.0	s/ min	5.0	•
F09	PID function group	,			
F09.00	PID setting source	0: digital PID setting 1: AI1 2: AI2 3: reserved 4: reserved 5: PULSE, high-frequency pulse (X5) 6: communication setting		0	0
F09.01	Digital PID setting	0.0 to PID setting feedback range F09.03		0.0	•
F09.02	PID feedback source	1: AI1 2: AI2 3: reserved 4: reserved 5: PULSE, high-frequency pulse (X5) 6: communication setting		1	0

User Manual of EM730 Series Inverter

F09.03	PID setting feedback range	0.1 ~ 6000.0		100.0	•
F09.04	PID positive and negative action selection	0: positive 1: negative		0	0
F09.05	Proportional gain 1	0.00 ~ 100.00		0.40	•
F09.06	Integral time 1	0.000 ~ 30.000, 0.000: no integral		2.000	•
F09.07	Differential time 1	0.000 ~ 30.000	ms	0.000	•
F09.08	Proportional gain 2	0.00 ~ 100.00		0.40	•
F09.09	Integral time 2	0.000 ~ 30.000, 0.000: no integral	s	2.000	•
F09.10	Differential time 2	0.000 ~ 30.000		0.000	•
F09.11	PID parameter switching conditions	0: no switching 1: switching via digital input terminal 2: automatic switching according to deviation 3: automatic switching by frequency		0	•
F09.12	PID parameter switching deviation		%	20.00	•
F09.13	PID parameter switching deviation 2	F09.12 ~ 100.00	%	80.00	•
F09.14	Initial PID value	0.00~100.00	%	0.00	•
F09.15	PID initial value holding time	0.00~650.00	s	0.00	•
F09.16	Upper limit of PID output	F9.17~ +100.0	%	100.0	•
F09.17	Lower limit of PID output	-100.0~F9.16		0.0	•
F09.18	PID deviation limit	0.00~100.00 (0.00: invalid)	%	0.00	•
F09.19	PID differential limit	0.00~100.00	%	5.00	•

User Manual of EM730 Series Inverter

PID integral separation threshold			100.00	•
PID setting change time	0.000~30.000		0.000	•
PID feedback filtering time).000~30.000		0.000	•
PID output filtering time	0.000~30.000	s	0.000	•
Upper limit detection value of PID feedback disconnection	0.00~100.00; 100.00 = invalid feedback disconnection	%	100.00	•
Lower limit detection value of PID feedback disconnection	0.00~100.00; 0.00 = invalid feedback disconnection	%	0.00	•
Detection time of PID feedback disconnection	0.000 ~ 30.000		0.000	•
PID sleep control options	0: invalid1: sleep at zero speed2: sleep at lower frequency limit3: sleep with tube sealed		0	•
Sleep action point	0.00-100.00 (100.00 corresponds to the PID setting feedback range)	%	100.00	•
Sleep delay time	0.0 ~ 6500.0	s	0.0	•
Wake-up action point	0.00 ~100.00 (100.00 corresponds to the PID setting feedback range)	%	0.00	•
Wake-up delay time	0.0 ~ 6500.0	s	0.0	•
Multi-segment PID setting 1	0.0 to PID setting feedback range F09.03		0.0	•
Multi-segment PID setting 2	0.0 to PID setting feedback range F09.03		0.0	•
Multi-segment PID setting 3	0.0 to PID setting feedback range F09.03		0.0	•
Upper limit of feedback voltage	lower limit of feedback voltage to 10.00	v	10.00	•
	separation threshold PID setting change time PID feedback filtering time PID output filtering time Upper limit detection value of PID feedback disconnection Lower limit detection value of PID feedback disconnection Detection time of PID feedback disconnection PID sleep control options Sleep action point Sleep delay time Wake-up action point Wake-up delay time Multi-segment PID setting 1 Multi-segment PID setting 3 Upper limit of	separation threshold $0.00-100.00$ (100.00% = invalid integral separation)PID setting change time $0.000-30.000$ PID feedback filtering time $0.000-30.000$ PID output filtering time $0.000-30.000$ Upper limit detection value of PID feedback disconnection $0.00-100.00$; 100.00 = invalid feedback disconnectionLower limit detection value of PID feedback disconnection $0.00-100.00$; 0.00 = invalid feedback disconnectionDetection time of PID feedback disconnection $0.00-100.00$; 0.00 = invalid feedback disconnectionDetection time of PID feedback disconnection $0.000 \sim 30.000$ Detection time of options $0:$ invalid 1: sleep at zero speed 2: sleep at lower frequency limit 3: sleep with tube sealedSleep action point $0.00-100.00$ (100.00 corresponds to the PID setting feedback range)Sleep delay time $0.0 \sim 6500.0$ Wake-up action point $0.00 \sim 100.00$ (100.00 corresponds to the PID setting feedback range)Wake-up delay time setting feedback range $0.0 \sim 6500.0$ Multi-segment PID setting 1 0.0 to PID setting feedback range F09.03Multi-segment PID setting 2 0.0 to PID setting feedback range F09.03Multi-segment PID setting 3 0.0 to PID setting feedback range F09.03Upper limit of leuge limit of 0.0 to PID setting feedback range F09.03	separation threshold $0.00 \sim 100.00 (100.00\% = invalid integralseparation)\%PID setting changetime0.000 \sim 30.000sPID feedbackfiltering time0.000 \sim 30.000sPID output filteringtime0.000 \sim 30.000sUpper limitdetection value ofPID feedbackdisconnection0.00 \sim 100.00; 100.00 = invalid feedbackdisconnection\%Lower limitdetection value ofPID feedbackdisconnection0.00 \sim 100.00; 0.00 = invalid feedbackdisconnection\%Detection value ofPID feedbackdisconnection0.00 \sim 100.00; 0.00 = invalid feedbackdisconnection\%Detection time ofPID feedbackdisconnection0.00 \sim 30.000sDetection time ofPID feedbackdisconnection0.000 \sim 30.000sDetection time ofPID feedbackdisconnection0.000 \sim 30.000sSleep action point0.00 \sim 100.00; (100.00 corresponds to the PIDsetting feedback range)\%Sleep action point0.00 \sim 6500.0sWake-up actionpoint0.00 \sim 6500.0sWake-up delay timepoint0.0 \sim 6500.0sMulti-segment PIDsetting 10.0 to PID setting feedback range F09.03\%Multi-segment PIDsetting 20.0 to PID setting feedback range F09.03\%Multi-segment PIDsetting 30.0 to PID setting feedback range F09.03\%Multi-segment PIDsetting 30.0 to PID setting feedback range F09.03\%$	separation threshold $0.00-100.00 (100.00\% = invalid integralseparation)\%100.00PID setting changetime0.000-30.000s0.000PID feedbackfiltering time0.000-30.000s0.000PID output filteringtime0.000-30.000s0.000PID output filteringtime0.00-30.000s0.000Upper limitdetection value ofPID feedbackdisconnection0.00-100.00; 100.00 = invalid feedbackdisconnection\%100.00Lower limitdetection value ofPID feedbackdisconnection0.00-100.00; 0.00 = invalid feedbackdisconnection\%0.00Detection time ofPID feedbackdisconnection0.00-100.00; 0.00 = invalid feedbackdisconnection\%0.00Sleep controloptions0.00-30.000s0.0000.000.00Sleep action point0.00-100.00; (100.00 corresponds to the PIDsetting feedback range)\%0.00Sleep delay timepoint0.0 \sim 6500.0s0.00Wake-up delay timepoint0.0 \sim 6500.0s0.0Multi-segment PIDsetting 10.0 to PID$

User Manual of EM730 Series Inverter

F09.36	Lower limit of feedback voltage	0.00 to upper limit of feedback voltage	v	0.00	•
F09.37	Integral action option within set PID change time	 D: always calculate the integral term 1: calculate the integral term after the F09.21 set time is reached 2: calculate the integral term when the error is less than F09.38 		0 Straight -2	•
F09.38	Integral within set PID change time Input deviation	0.00-100.00	%	0	•
F09.39	Wake-up option	0: target pressure F09.01* coefficient of wake-up action point 1: wake-up action point (F09.30)		0	0
F09.40	Coefficient of wake-up action point	0.0~100.0 (100% corresponds to PID setting)		90.0	•
F09.41	Pipeline network alarm overpressure	0.0 to pressure sensor range F09.03		90.0	•
F09.42	Overpressure protection time	0 ~ 3600 (0: invalid)		6	•
F09.43	PID reverse limit	0: no limit 1: limit		1	0
F10	Communication fu	nction group			
F10.00	Local Modbus communication address	1-247; 0: broadcast address		1	0
F10.01	Baud rate of Modbus communication	0:4800 1:9600 2:19200 3:38400 4:57600 5:115200		1	0
F10.02	Modbus data format	5:115200 0: 1-8-N-1 (1 start bit + 8 data bits + 1 stop bit) 1: 1-8-E-1 (1 start bit + 8 data bits + 1 even parity check bit + 1 stop bit) 2: 1-8-O-1 (1 start bit + 8 data bits + 1 odd parity check bit + 1 stop bit) 3: 1-8-N-2 (1 start bit + 8 data bits + 2 stop		0	0

User Manual of EM730 Series Inverter

	inual of Elvi/50 Series	, mverter			
F10.03	485 communication timeout	bits) 4: 1-8-E-2 (1 start bit + 8 data bits + 1 even parity check bit + 2 stop bits) 5: 1-8-O-2 (1 start bit + 8 data bits + 1 odd parity check bit + 2 stop bits) 0.0s ~ 60.0s; 0.0: invalid (valid for the master-slave mode)	s	0.0	•
F10.04	Modbus response delay	1 ~ 20	ms	2	•
F10.05	Options of master-slave communication function	0: invalid 1: valid		0	0
F10.06	Master-slave options	0: slave 1: host (Modbus protocol broadcast transmission)		0	0
F10.07	Data sent by host	0: output frequency 1: set frequency 2: output torque 3: set torque 4: PID setting 5: output current		1	0
F10.08	Proportional factor of slave reception	0.00 ~ 10.00 (multiple)		1.00	•
F10.09	Host sending interval	0.000 ~ 30.000	s	0.200	•
F10.10	Communication protocol option	0: Modbus-RTU protocol		0	×
F10.56	Options of 485 EEPROM writing	0-10: default operation (for commissioning) 11: writing not triggered (available after commissioning)		0	0
F10.57	Enabling of SCI sending timeout resetting	0: invalid resetting 1: valid resetting		1	•
F10.58	Delay time of SCI sending timeout resetting	110~10000	mS	150	•
F10.61	SCI response option	0: reply to both read and write commands1: reply to write commands only2: no reply to both read and write commands		0	0

F11	User-selected paral	neter group		
F11.00	User-selected parameter 1		U 00.00	•
F11.01	User-selected parameter 2		U 00.01	•
F11.02	User-selected parameter 3		U 00.02	•
F11.03	User-selected parameter 4		U 00.03	•
F11.04	User-selected parameter 5		U 00.04	•
F11.05	User-selected parameter 6		U 00.07	•
F11.06	User-selected parameter 7		U 00.14	•
F11.07	User-selected parameter 8	The displayed content is Uxx.xx, which	U 00.15	•
F11.08	User-selected parameter 9	means that the Fxx.xx function code is selected When the function code F11.00 is	U 00.16	•
F11.09	User-selected parameter 10	enabled, the keyboard displays U00.00, indicating that the first selected parameter is	U 00.18	•
F11.10	User-selected parameter 11	F00.00.	U 00.19	•
F11.11	User-selected parameter 12		U 00.29	•
F11.12	User-selected parameter 13		U 02.00	•
F11.13	User-selected parameter 14		U 02.01	•
F11.14	User-selected parameter 15		U 02.02	•
F11.15	User-selected parameter 16		U 03.00	•
F11.16	User-selected parameter 17		U 03.02	•
F11.17	User-selected parameter 18		U 03.21	•

User Manual of EM730 Series Inverter

00001 1110	indar of Elvi750 Series			
F11.18	User-selected parameter 19		U 04.00	•
F11.19	User-selected parameter 20		U 04.20	•
F11.20	User-selected parameter 21		U 05.00	•
F11.21	User-selected parameter 22		U 05.03	•
F11.22	User-selected parameter 23		U 05.04	•
F11.23	User-selected parameter 24		U 08.00	•
F11.24	User-selected parameter 25		U 19.00	•
F11.25	User-selected parameter 26		U 19.01	•
F11.26	User-selected parameter 27		U 19.02	•
F11.27	User-selected parameter 28		U 19.03	•
F11.28	User-selected parameter 29		U 19.04	•
F11.29	User-selected parameter 30		U 19.05	•
F11.30	User-selected parameter 31		U 19.06	•
F12	Keyboard and disp	lay function group		
F12.00	Reserved		1	0
F12.01	Options of stop function of STOP key	0: valid only in keyboard control 1: with all command channels valid	1	0
F12.02	Parameter locking	0: do not lock 1: reference input not locked 2: all locked, except for this function code	0	•
F12.03	Parameter copying	0: no operation 1: parameter upload to keyboard 2: download parameters to inverter(F01 and F14 groups do not download)	0	0

User Manual of EM730 Series Inverter

		3: download parameters to inverter			
F12.09	Load speed display coefficient	0.01~600.00		30.00	•
F12.10	UP/DOWN acceleration and deceleration rate	0.00: automatic rate 0.05~500.00Hz/s		5.00Hz/ s	0
F12.11	Options of UP/DOWN offset clearing	0: not clear (clear changes in main frequency setting) 1: clear in non-running state 2: clear by releasing the UP/DOWN button 3: clear once in non-running state	0	0	
F12.12	Options of UP/DOWN power-down saving of offset	0: do not save 1: save (valid after the offset is modified)		1	0
F12.13	Power meter resetting	0: do not clear 1: clear		0	•
F12.14	Restoration of factory defaults	0: no operation 1: restoration of factory defaults (excluding the motor parameters, inverter parameters, manufacturer parameters, running and power-on time record)		0	0
F12.15	Cumulative power-on time (h)	0~65535	h	XXX	×
F12.16	Cumulative power-on time (min)	0~59	min	XXX	×
F12.17	Cumulative running time (h)	0~65535	h	XXX	×
F12.18	Cumulative running time (min)	0~59	min	XXX	×
F12.19	Rated power of inverter	0.40 ~ 650.00	kW	Depend ing on the motor type	×
F12.20	Rated voltage of inverter	60 ~ 690	v	Depend ing on the motor type	×
F12.21	Rated current of inverter	0.1 ~ 1500.0	A	Depend ing on	×

			m	the iotor ype	
F12.22	Performance software S/N 1	XXX.XX	XX	XX.X X	×
F12.23	Performance software S/N2	XX.XXX	XX	X.XX X	×
F12.24	Functional software S/N 1	XXX.XX	XX	XX.X X	×
F12.25	Functional software S/N 2	XX.XXX	XX	X.XX X	×
F12.26	Keyboard software serial number 1	XXX.XX	XX	XX.X X	×
F12.27	Keyboard software serial number 2	XX.XXX	XX	X.XX X	×
F12.28	Serial No. 1	XX.XXX		X.XX X	×
F12.29	Serial No. 2	XXXX.X		XXX. X	×
F12.30	Serial No. 3	XXXXX	X	XXX X	×
F12.31	LCD language options	0: Chinese 1: English 2: reserved		0	•
F12.33	Running status display parameter 1 of Mode 1 (LED stop status display parameter 5)	0.00 ~ 99.99	1	8.00	•
F12.34	Running status display parameter 2 of Mode 1 (LED stop status display parameter 1)	0.00 - 99.99	1	8.01	•
F12.35	Running status display parameter 3 of Mode 1 (LED stop status display parameter 2)	0.00 ~ 99.99	1	8.06	•

User Manual of EM730 Series Inverter

	nual of Elvi/50 Series								
F12.36	Running status display parameter 4 of Mode 1 (LED stop status display parameter 3)	0.00 ~ 99).00 ~ 99.99					18.08	•
F12.37	Running status display parameter 5 of Mode 1 (LED stop status display parameter 4)	0.00 ~ 99	0.00 ~ 99.99					18.09	•
F12.38	LCD large-line display parameter 1	0.00 ~ 99	9.99					18.00	•
F12.39	LCD large-line display parameter 2	0.00 ~ 99	.99					18.06	•
F12.40	LCD large-line display parameter 3	0.00 ~ 99	0.00 ~ 99.99						•
F12.41	Options of UP/DOWN zero crossing	0: invalid 1: valid	l					0	0
F12.42	Frequency setting of digital potentiometer	0.00 to m	aximum	frequency	F00.16		Hz	0.00	×
F12.43	Digital potentiometer torque setting	0.00- Dig	tital torqu	e setting l	F13.02		%	0.0	×
F12.45	UP/DOWN function options of keyboard	Commu nication 0	High- speed pulse 0	Analog quantity 0	Digital frequen cy 0	Multi- segment speed 0		00000	0
		0: invalid 1: valid	0: invalid 1: valid						
F12.48	Output frequency display		0: absolute value 1: positive/negative					1	•
F13	Torque control par	ameter g	roup						
F13.00	Speed/torque control options	0: speed 1: torque						0	0

	iluar of Elvi/50 Series				
F13.01	Options of torque setting source	0: digital torque setting F13.02 1: AI1 2: AI2 3: reserved 4: reserved 5: high frequency pulse input (X5) 6: communication setting 7: reserved 8: digital potentiometer setting (Full range of the items 1-6, corresponding to F13.02 digital torque setting)		0	0
F13.02	Digital torque setting	-200.0 ~ 200.0	%	100.0	•
F13.03	Multi-segment torque 1	-200.0 ~ 200.0	%	0.0	•
F13.04	Multi-segment torque 2	-200.0 ~ 200.0	%	0.0	•
F13.05	Multi-segment torque 3	$-200.0 \sim 200.0$	%	0.0	•
F13.06	Torque control acceleration and deceleration time	0.00 ~ 120.00	S	0.00	•
F13.08	Upper frequency limit options of torque control	0: set by F13.09 1: AI1 2: AI2 3: reserved 4: reserved 5: high frequency pulse input (X5) 6: communication setting (percentage) 7: communication setting (direct frequency)		0	0
F13.09	Positive upper limit of torque control frequency	0.50 to maximum frequency F00.16	Hz	50.00	•
F13.10	Upper frequency limit offset	0.00 to maximum frequency F00.16	Hz	0.00	•
F13.11	Static friction torque compensation	0.0 ~ 100.0	%	0.0	•
F13.12	Frequency range of static friction compensation	0.00 ~ 50.00	Hz	1.00	•

User Manual of EM730 Series Inverter

F13.13	Dynamic friction torque compensation	0.0 ~ 100.0	%	0.0	•
F13.18	Reverse speed limit options	0~100	%	100	•
F13.19	Reverse torque control options	0~1		0	•
F14	Parameter group o	f motor 2			
F14.00	Motor type	0: ordinary asynchronous motor 1: variable-frequency asynchronous motor 2: permanent magnet synchronous motor		0	0
F14.01	Rated power of electric motor	0.10~650.00	kW	Depend ing on the motor type	0
F14.02	Rated voltage of motor	50~2000	V	Depend ing on the motor type	0
F14.03	Rated current of motor	0.01 to 600.00 rated power of motor: ≤ 75 kW) 0.1 to 6000.0 (rated power of motor: > 75 kW)	А	Depend ing on the motor type	0
F14.04	Rated frequency of motor	0.01~600.00	Hz	Depend ing on the motor type	0
F14.05	Rated speed	1~60000	rpm	Depend ing on the motor type	0
F14.06	Motor winding connection	0:Υ 1:Δ		Depend ing on the motor type	0
F14.07	Rated power factor of motor	0.600~1.000		Depend ing on the motor	0

				type	
F14.08	Motor efficiency	30.0~100.0	%	Depend ing on the motor type	0
F14.09	Stator resistance of asynchronous motor	1~ 60000 (rated power of motor: ≤ 75 kW) 0.1~ 6000.0 (rated power of motor: > 75kW)	mΩ	Depend ing on the motor type	0
F14.10	Rotor resistance of asynchronous motor	$1\sim 60000$ (rated power of motor: ≤ 75 kW) 0.1 ~ 6000.0 (rated power of motor: > 75 kW)	mΩ	Depend ing on the motor type	0
F14.11	Leakage inductance of asynchronous motor	0.01 to 600.00 (rated power of motor: ≤ 75 kW) 0.001 to 60.000 (rated power of motor: > 75 kW)	mH	Depend ing on the motor type	0
F14.12	Mutual inductance of asynchronous motor	0.1 to 6000.0 (rated power of motor: ≤ 75 kW) 0.01 to 600.00 (rated power of motor: > 75 kW)	mH	Depend ing on the motor type	0
F14.13	No-load excitation current of asynchronous motor	0.01 to 600.00 (rated power of motor: ≤ 75 kW) 0.1 to 6000.0 (rated power of motor: > 75 kW)	А	Depend ing on the motor type	0
F14.14	Flux weakening coefficient 1 of asynchronous motor	10.00 ~ 100.00	%	87.00	0
F14.15	Flux weakening coefficient 2 of asynchronous motor	10.00 ~ 100.00	%	80.00	0
F14.16	Flux weakening coefficient 3 of asynchronous motor	10.00 ~ 100.00	%	75.00	0
F14.17	Flux weakening coefficient 4 of asynchronous	10.00 ~ 100.00	%	72.00	0

User Manual of EM730 Series Inverter

	motor				
F14.18	Flux weakening coefficient 5 of asynchronous motor	10.00 ~ 100.00	%	70.00	0
F14.19	Stator resistance of synchronous motor	1~60000 (rated power of motor: ≤75kW) 0.1 to 6000.0 (rated power of motor: > 75 kW)	mΩ	Depend ing on the motor type	0
F14.20	d-axis inductance of synchronous motor	0.01~600.00 (rated power of motor: ≤ 75 kW) 0.001~60.000 (rated power of motor: > 75kW)	mH	Depend ing on the motor type	0
F14.21	q-axis inductance of synchronous motor	0.01~600.00 (rated power of motor: ≤ 75 kW) 0.001~60.000 (rated power of motor: > 75kW)	mH	Depend ing on the motor type	0
F14.22	Counter electromotive force of synchronous motor	10.0~2000.0 (counter electromotive force of rated speed)	V	Depend ing on the motor type	0
F14.23	Initial electrical angle of synchronous motor	0.0~359.9 (valid for synchronous motor)			0
F14.34	Motor parameter self-learning	 00: no operation 01: static self-learning of asynchronous motor 02: rotation self-learning of asynchronous motor 03: inertia self-learning of asynchronous motor 11: static self-learning of synchronous motor 12: rotary self-learning of synchronous motor 13: encoder self-learning of synchronous 		00	0
F14.35	Drive control mode of motor 2	0: v/f control (VVF) 1: speed sensorless vector control (SVC)		0	0
F14.36	Speed proportional gain ASR P1	0.00~100.00		12.00	•
F14.37	Speed integral time constant ASR_T1	0.000~30.000 0.000: no integral	s	0.200	•

User Manual of EM730 Series Inverter

F14.38	Speed proportional gain ASR P2	0.00~100.00		8.00	•
F14.39	Speed integral time constant ASR T2	0.000~30.000 0.000: no integral	s	0.300	•
F14.40	Switching frequency 1	0.00 to switching frequency 2	Hz	5.00	•
F14.41	Switching frequency 2	switching frequency 1 to maximum frequency F00.16	Hz	10.00	•
F14.42	No-load current gain of motor 2	50.0~300.0	%	50.0	•
F14.43	Filtering time constant of speed loop output	0.000 ~ 0.100	s	0.001	•
F14.44	Vector control slip gain	50.00~200.00	%	100.00	•
F14.45	Upper limit source selection of speed control torque	0: set by F06.10 and F06.11 1: AI1 2: AI2 3: reserved 4: reserved 5: communication setting (percentage) 6: The larger of AI1 and AI2 7: The smaller of AI1 and AI2		0	0
F14.46	Upper limit of speed control motor torque	$0.0 \sim 250.0$	%	165.0	•
F14.47	Upper limit of speed control brake torque	0.0 ~ 250.0	%	165.0	•
F14.48	Excitation current proportional gain ACR-P1	0.00~100.00		0.50	•
F14.49	Excitation current integral time constant ACR-T1	0.00 ~ 600.00 0.00: no integral	ms	10.00	•
F14.50	Torque current proportional gain ACR-P2	0.00 ~ 100.00		0.50	•
F14.51	Torque current integral time constant ACR-T2	0.00 ~ 600.00 0.00: no integral	ms	10.00	•

User Manual of EM730 Series Inverter

F14.52	Stiffness coefficient of speed loop of motor 2	0~20		12	•
F14.53	SVC zero-frequency processing	0: braking 1: not processed 2: seal the tube		2	0
F14.54	SVC zero-frequency braking current	$50.0 \sim 400.0$ (100.0 is the no-load current of the motor)	%	100.0	0
F14.56	Voltage feedforward gain	0~100	%	0	•
F14.57	Flux weakening control options	0: invalid 1: direct calculation 2: automatic adjustment		2	0
F14.58	Flux weakening voltage	70.00 ~ 100.00	%	95.00	•
F14.59	Maximum field weakening current of synchronous motor	$0.0 \sim 150.0 (100.0 \text{ is the rated current of the motor})$	%	100.0	•
F14.60	Proportional gain of flux weakening regulator	0.00 ~ 10.00		0.50	•
F14.61	Integral time of flux weakening regulator	$0.01 \sim 60.00$	s	2.00	•
F14.62	MTPA control option of synchronous motor	0: invalid 1: valid		0	0
F14.63	Self-learning gain at initial position	0~200	%	100	•
F14.64	Frequency of low frequency band of injection current	$0.00 \sim 100.00 (100.00 \text{ is the rated frequency})$ of the motor)	%	10.00	•
F14.65	Injection current of low frequency band	$0.0 \sim 60.0$ (100.0 is the rated current of the motor)	%	20.0	•
F14.66	Regulator gain of low frequency band of injection current	0.00 ~ 10.00		0.50	•
F14.67	Regulator integral time of low frequency band of injection current	0.00 ~ 300.00	ms	10.00	•
F14.68	Frequency of high frequency band of	$0.00 \sim 100.00$ (100.00 is the rated frequency of the motor)	%	20.00	•

User Manual of EM730 Series Inverter

	injection current				
F14.69	Injection current f high frequency band	$0.0 \sim 30.0 (100.0 \text{ is the rated current of the motor})$	%	8.0	•
F14.70	Regulator gain of high frequency band of injection current	0.00 ~ 10.00		0.50	•
F14.71	Regulator integral time of high frequency band of injection current	0.00 ~ 300.00	ms	10.00	•
F14.77	Acceleration/decele ration time options of motor 2	0: the same as motor 1 1: acceleration and deceleration time 1 2: acceleration and deceleration time 2 3: acceleration and deceleration time 3 4: acceleration and deceleration time 4		0	0
F14.78	Maximum frequency of motor 2	20.00 ~ 600.00	Hz	50	0
F14.79	Upper frequency limit of motor 2	lower limit frequency F00.19 to maximum frequency F14.78	Hz	50	•
F14.80	V/F curve setting of motor 2	0: straight line V/F 1: multi-point broken line V/F 2: 1.3-power V/F 3: 1.7-power V/F 4: square V/F 5: VF complete separation mode (Ud = 0, Uq = K * t = voltage of separation voltage source) 6: VF semi-separation mode (Ud = 0, Uq = K * t = F/Fe * 2 * voltage of separation voltage source)		0	0
F14.81	Multi-point VF frequency F1 of motor 2	0.00 ~ F14.83	Hz	0.50	•
F14.82	Multi-point VF voltage V1 of motor 2	$0.0 \sim 100.0 \ (100.0 = \text{Rated voltage})$	%	1.0	•
F14.83	Multi-point VF frequency F2 of motor 2	F14.81 ~ F14.85	Hz	2.00	•
F14.84	Multi-point VF voltage V2 of motor 2	0.0 ~ 100.0	%	4.0	•

User Manual of EM730 Series Inverter

	indui of Entry of Series				
F14.85	Multi-point VF frequency F3 of motor 2	F14.83 to rated frequency of motor (reference frequency)	Hz	5.00	•
F14.86	Multi-point VF voltage V3 of motor 2	0.0 ~ 100.0	%	10.0	•
F14.87	Stop mode of motor 2	0: slow down to stop 1: free stop		0	0
F14.96	Low speed correction factor of stator resistor of asynchronous motor 2	10.0 ~ 500.0	%	100.0	•
F14.97	Low speed correction factor of rotor resistor of asynchronous motor 2	10.0 ~ 500.0	%	100.0	•
F14.98	Slip gain switching frequency of asynchronous motor 2	0.10 ~ Fmax	Hz	5.00	0
F15	Auxiliary function	group			
F15.00	Jog frequency	0.00 to maximum frequency F00.16	Hz	5.00	•
F15.01	Jog acceleration time	$0.00 \sim 650.00 \text{ (F15.13=0)}$ $0.0 \sim 6500.0 \text{ (F15.13=1)}$ $0 \sim 65000 \text{ (F15.13=2)}$	s	5.00	•
F15.02	Jog deceleration time	0.00 ~ 650.00 (F15.13=0) 0.0 ~ 6500.0 (F15.13=1) 0 ~ 65000 (F15.13=2)	s	5.00	•
F15.03	Acceleration time 2	0.00 ~ 650.00 (F15.13=0) 0.0 ~ 6500.0 (F15.13=1) 0 ~ 65000 (F15.13=2)	s	15.00	•
		0.00 (50.00 (515.12.0)			
F15.04	Deceleration time 2	$0.00 \sim 650.00 (F15.13=0)$ $0.0 \sim 6500.0 (F15.13=1)$ $0 \sim 65000 (F15.13=2)$	s	15.00	•
F15.04 F15.05	Deceleration time 2 Acceleration time 3		s s	15.00 15.00	•

User Manual of EM730 Series Inverter

0001 1/14	indar of Elvi750 Series				
F15.07	Acceleration time 4	0.00 ~ 650.00 (F15.13=0) 0.0 ~ 6500.0 (F15.13=1) 0 ~ 65000 (F15.13=2)	s	15.00	•
F15.08	Deceleration time 4	$0.00 \sim 650.00 \text{ (F15.13=0)}$ $0.0 \sim 6500.0 \text{ (F15.13=1)}$ $0 \sim 65000 \text{ (F15.13=2)}$	s	15.00	•
F15.09	Fundamental frequency of acceleration and deceleration time	0: maximum frequency F00.16 1: 50.00Hz 2: set frequency		0	0
F15.10	Automatic switching of acceleration and deceleration time	0: invalid 1: valid		0	0
F15.11	Switching frequency of acceleration time 1 and 2	0.00 to maximum frequency F00.16	Hz	0.00	•
F15.12	Switching frequency of deceleration time 1 and 2	0.00 to maximum frequency F00.16	Hz	0.00	•
F15.13	Acceleration and deceleration time unit	0:0.01s 1:0.1s 2:1s		0	0
F15.14	Frequency hopping point 1	0.00 ~ 600.00	Hz	600.00	•
F15.15	Hopping range 1	0.00 ~ 20.00, 0.00 is invalid	Hz	0.00	•
F15.16	Frequency hopping point 2	0.00 ~ 600.00	Hz	600.00	•
F15.17	Hopping range 2	0.00 ~ 20.00, 0.00 is invalid	Hz	0.00	•
F15.18	Frequency hopping point 3	0.00 ~ 600.00	Hz	600.00	•
F15.19	Hopping range 3	0.00 ~ 20.00, 0.00 is invalid	Hz	0.00	•
F15.20	Detection width of output frequency arrival (FAR)	0.00 ~ 50.00	Hz	2.50	0

User Manual of EM730 Series Inverter

F15.21	Output frequency detection FDT1	0.00 to maximum frequency F00.16	Hz	30.00	0		
F15.22	FDT1 hysteresis	-(Fmax-F15.21)~F15.21	Hz	2.00	0		
F15.23	Output frequency detection FDT2	0.00 to maximum frequency F00.16	Hz	20.00	0		
F15.24	FDT2 hysteresis	-(Fmax-F15.23)~F15.23	Hz	2.00	0		
F15.25	Options of analog level detection ADT	0: AI1 1: AI2		0	0		
F15.26	Analog level detection ADT1	0.00 ~ 100.00	%	20.00	•		
F15.27	ADT1 hysteresis	0.00 to F15.26 (valid down in one direction)	%	5.00	•		
F15.28	Analog level detection ADT2	0.00 ~ 100.00	%	50.00	•		
F15.29	ADT2 hysteresis	0.00 to F15.28 (valid down in one direction)	%	5.00	•		
F15.30	Options of energy consumption braking function	0: invalid 1: valid		0	0		
F15.31	Energy consumption braking voltage	110.0 ~ 140.0 (380V, 100.0 = 537V)	%	125.0	0		
F15.32	Braking rate	$20 \sim 100 (100 \text{ means that duty ratio is } 1)$	%	100	•		
F15.33	Operating mode with set frequency less than lower frequency limit	0: running at the lower frequency limit 1: shutdown 2: zero-speed running		0	0		
F15.34	Fan control	Ones place: fan control mode 0: running after power-on 1: running at startup 2: intelligent operation, subject to temperature control Tens place: power on fan control 0: run for 1 minute and then run in fan control mode 1: directly operate in fan control mode Hundreds place: Fan low speed mode enable		101	0		

User Manual of EM730 Series Inverter

		(above 280kW) 1: the operation at low speed is invalid			
		2: low speed operation is valid			
F15.35	Overmodulation intensity	1.00 ~ 1.10		1.05	•
F15.36	Switching options of PWM modulation mode	0: invalid (7-segment PWM modulation) 1: valid (5-segment PWM modulation)		0	0
F15.37	Switching frequency of PWM modulation mode	0.00 to maximum frequency F00.16	Hz	15.00	•
F15.38	Options of dead zone compensation mode	0: no compensation 1: compensation mode 1 2: compensation mode 2		1	0
F15.39	Terminal jog priorityv	0: invalid 1: valid		0	0
F15.40	Deceleration time for quick stop	0.00 ~ 650.00 (F15.13=0) 0.0 ~ 6500.0 (F15.13=1) 0 ~ 65000 (F15.13=2)	s	1.00	•
F15.55	The current reaches the measured value	$0.0 \sim 300.0$ (100.0% corresponding to rated motor current)	%	100.0	•
F15.56	The current reaches the hysteresis	0.0~F15.44	%	5.0	•
F15.57	Torque reaches test value	0.0~300.0 (100.0% corresponding to rated motor torque)	%	100.0	•
F15.58	The torque reaches the hysteresis ring	0.0~F15.46	%	5.0	•
F15.62	PG card feedback frequency display filtering time	0~20000	ms	300	•
F15.63	The speed reaches the limit of rise	0.00~Fmax	Hz	30.00	•
F15.64	The speed reaches filtering time	0~60000	ms	500	•
F15.65	The speed reaches the limit of descent	0.00~Fmax	Hz	0.00	•
F15.66	Overcurrent detection level	0.1~ 300.0 (0.0: no detection; 100.0%: corresponding to the rated current of motor)	%	200.0	•

User Manual of EM730 Series Inverter

-	User Wahdar of EW/50 Series inverter							
F15.67	Overcurrent detection delay time	$0.00 \sim 600.00$	s	0.00	•			
F15.68	Market price	0.00 ~ 100.00		1.00	0			
F15.69	Power-frequency load factor	30.0 ~ 200.0	%	90.0	0			
F16	Customization fund	ction group						
F16.00	Industry application	 0: universal model 1: water supply application 2: air compressor application 3: winding application 4: fan application 5: spindle application of machine tool 6: extruder application 7: high-speed motor application 8: plastic extruding machine 9: EM100 comm macro 10: EM303B comm macro 		0	0			
F16.01	Set length	1 ~ 65535 (F16.13=0) 0.1 ~ 6553.5 (F16.13=1) 0.01~ 655.35 (F16.13=2) 0.001 ~ 65.535 (F16.13=3)	m	1000	•			
F16.02	Pulses per meter	0.1 ~ 6553.5		100.0	•			
F16.03	Set count value	F16.04 ~ 65535		1000	•			
F16.04	Specified count value	1 ~ F16.03		1000	•			
F16.05	Set time of regular running	0.0~ 6500.0, 0.0 is invalid	min	0.0	•			
F16.06	Agent password	0~65535		0	•			
F16.07	Setting of cumulative power-on arrival time	0-65535; 0: disable the protection when the power-on time is up	h	0	•			
F16.08	Setting of cumulative running arrival time	0-65535; 0: disable the protection when the running time is up	h	0	•			

User Manual of EM730 Series Inverter

F16.09	Factory password	0~65	535								XXXX	•
F16.10	Analog output percentage corresponding to the count value 0	0.00 -	~100.(00						%	0.00	0
F16.11	Analog output percentage corresponding to the set count value	0.00 ~	~100.0)0						%	100.00	0
		0:1m										
F16.13	Set length	1:0.1	m								0	0
1 10.15	resolution	2:0.0	1 m								0	
		3:0.0	01m									
F17	Virtual I/O functio	n grou	ıp									
F17.00	VX1 virtual input function options										0	0
F17.01	VX2 virtual input function options	-									0	0
F17.02	VX3 virtual input function options										0	0
F17.03	VX4 virtual input function options	The s	ame a	s the f	functio	on opti	ions o	f digit	al		0	0
F17.04	VX5 virtual input function options	input	termi	nal of	F02 g	roup					0	0
F17.05	VX6 virtual input function options										0	0
F17.06	VX7 virtual input function options										0	0
F17.07	VX8 virtual input function options				1	1			1		0	0
		D7	D6	D5	D4	D3	D2	D1	D0			
F17.08	Virtual input positive/negative logic	VX8	VX8 VX7 VX6 VX5 VX4 VX3 VX2 VX1							000 00000	0	
	logic	-		•		in the 1 state		1				

User Manual of EM730 Series Inverter

		1 · nee	pative	logic	invali	id in tl	ie clos	sed				
			: negative logic, invalid in the closed tate/valid in the open state									
		D7	D6	D5	D4	D3	D2	D1	D0			
F17.09	VX1-VX8 status setting options	VX8	VX7	VX6	VX5	VX4	VX3	VX2	VX1		000	0
	setting options	status	vXn s tus set			same	as VY	/n out	put		00000	
		D7	D6	D5	D4	D3	D2	D1	D0			
F17.10	VX1-VX8 status setting	VX8	VX7	VX6	VX5	VX4	VX3	VX2	VX1		000 00000	•
		0: inv 1: val										
F17.11	VX1 valid delay time	0.000	~30.0	00						s	0.000	•
F17.12	VX1 invalid delay time	0.000	~30.0	00						s	0.000	•
F17.13	VX2 valid delay time	0.000	~30.0	00						s	0.000	•
F17.14	VX2 invalid delay time	0.000	~30.0	00						s	0.000	•
F17.15	VX3 valid delay time	0.000	~30.0	00						s	0.000	•
F17.16	VX3 invalid delay time	0.000	~30.0	00						s	0.000	•
F17.17	VX4 valid delay time	0.000	~30.0	00						s	0.000	•
F17.18	VX4 invalid delay time	0.000	~30.0	00						s	0.000	•
F17.19	VY1 virtual output function options										0	0
F17.20	VY2 virtual output function options		ame a it term				ons o	f digit	al		0	0
F17.21	VY3 virtual output function options					-					0	0

User Manual of EM730 Series Inverter

VY4 virtual output function options										0	0
VY5 virtual output function options										0	0
Reserved											
Reserved											
Reserved											
	D7	D6	D5	D4	D3	D2	D1	D0			
Virtual output	VY8	VY7	VY6	VY5	VY4	VY3	VY2	VY1		00000	0
logic	state/ 1: neg	invali gative	d in th logic,	e oper invali	n state id in tl						
	D7	D6	D5	D4	D3	D2	D1	D0			
Control options of virtual output	VY8	VY7	VY6	VY5	VY4	VY3	VY2	VY1		11111	0
terminal	(with	out V	Y6-8)								
VY1 valid delay time	0.000	~30.0	00		-				s	0.000	•
VY1 invalid delay time	0.000	~30.0	00						s	0.000	•
VY2 valid delay time	0.000	~30.0	00						s	0.000	•
VY2 invalid delay time	0.000	~30.0	00						s	0.000	•
VY3 valid delay time	0.000	~30.0	00						s	0.000	•
VY3 invalid delay time	0.000	~30.0	00						s	0.000	•
VY4 valid delay time	0.000	~30.0	00						s	0.000	•
	function options VY5 virtual output function options Reserved Reserved Virtual output positive/negative logic Control options of virtual output terminal VY1 valid delay time VY1 invalid delay time VY2 valid delay time VY2 invalid delay time VY3 invalid delay time VY3 invalid delay time VY3 invalid delay time	function optionsVY5 virtual output function optionsReservedReservedReservedReservedVirtual output positive/negative logicD7Virtual output positive/negative logicD7Virtual output positive/negative logicD7Virtual output positive/negative logicD7Virtual output positive/negative logicD7Control options of virtual output terminalD7VY1 valid delay time0: deg (with 1: deg 0: deg (with 1: degVY1 valid delay time0.000VY2 valid delay time0.000VY2 invalid delay time0.000VY3 valid delay time0.000VY3 invalid delay time0.000VY4 valid delay time0.000	function optionsVY5 virtual output function optionsReservedReservedReservedVirtual output positive/negative logicD7D7D6Virtual output positive/negative logicVY8VY70: positive state/invalid 1: negative state/valid id 0: dependir (without V) 1: dependir (without V) 1: dependir VY1 valid delay timeVY1 valid delay time0.000~30.0VY2 valid delay time0.000~30.0VY3 valid delay time0.000~30.0VY3 invalid delay time0.000~30.0VY3 valid delay time0.000~30.0VY3 valid delay time0.000~30.0VY3 valid delay time0.000~30.0VY4 valid delay time0.000~30.0VY4 valid delay time0.000~30.0	function optionsVY5 virtual output function optionsReservedReservedReservedVirtual output positive/negative logicD7D6D5Virtual output positive/negative logicVY8VY7VY60: positive logic, state/invalid in th 1: negative logic, state/valid in the 1: depending on the (without VY68) 1: depending on the (without VY1 valid delay) timeVY1 valid delay time $0.000~30.000$ VY3 valid delay time $0.000~30.000$ VY3 invalid delay time $0.000~30.000$ VY4 valid delay time $0.000~30.000$	function optionsVY5 virtual output function optionsReservedReservedReservedVirtual output positive/negative logicD7D6D5D4Virtual output positive/negative logicD7D6D5D4Virtual output positive/negative logicD7D6D5D4Virtual output positive/negative logicD7D6D5D4Virtual output reminalD7D6D5D4Virtual output terminalD7D6D5D4VY1 valid delay time0.000~30.000UY2VY5VY1 valid delay time0.000~30.000UY2VY2VY2 valid delay time0.000~30.000UY3 invalid delay time0.000~30.000VY3 valid delay time0.000~30.000UY3 invalid delay time0.000~30.000VY3 valid delay time0.000~30.000UV3VY4 valid delay time0.000~30.000UV3	function optionsVY5 virtual output function optionsReservedReservedReservedVirtual output positive/negative logicD7D6D5D4D3Virtual output positive/negative logicVY8VY7VY6VY5VY40: positive logic, valid in the state/invalid in the open state 1: negative logic, invalid in the state/valid in the open state 1: negative logic, invalid in the state/valid in the open state 1: negative logic, or the state of (without VY6-8) 1: depending on the status of (without VY6-8) 1: depending on the output fut 0: 000~30.000VY1 valid delay time $0.000~30.000$ VY2 valid delay timeVY2 invalid delay time $0.000~30.000$ VY3 valid delay time $0.000~30.000$ VY3 invalid delay time $0.000~30.000$ VY4 valid delay time $0.000~30.000$	function optionsVY5 virtual output function optionsReservedReservedReservedReservedVirtual output positive/negative logicD7D6D5D4D3D2Virtual output positive/negative logicVY8VY7VY6VY5VY4VY3D7D6D5D4D3D2Virtual output positive/negative logic0: positive logic, valid in the closed state/invalid in the open state 1: negative logic, invalid in the closed state/valid in the open stateD7D6D5D4D3D2Control options of virtual output terminalD7D6D5D4D3D20: depending on the status of termin (without VY6-8) 1: depending on the status of termin (without VY6-8) 1: depending on the output functionVY1 valid delay time $0.000 \sim 30.000$ UV3VY3VY2 valid delay time $0.000 \sim 30.000$ UV3VY3 valid delayVY3 valid delay time $0.000 \sim 30.000$ UV4VY4VY4 valid delay time $0.000 \sim 30.000$ UV4	function optionsVY5 virtual output function optionsReservedReservedReservedReservedVirtual output positive/negative logicVT8VY7VY6VY5VY4VY2VY8VY7VY6VY5VY4VY20: positive logic, valid in the closed state/invalid in the open state 1: negative logic, invalid in the closed state/valid in the open stateD7D6D5D4D3D2D1Control options of virtual output terminalD7D6D5D4D3D2D1Control options of virtual output terminalD7D6D5D4D3D2D10: depending on the status of terminal X1 (without VY6-8) 1: depending on the output function statuVY1 valid delay time $0.000-30.000$ $VY2$ valid delay timeVY2 valid delay time $0.000-30.000$ VY3 valid delay time $0.000-30.000$ VY3 invalid delay time $0.000-30.000$	function optionsVY5 virtual output function optionsReservedReservedReservedVirtual output positive/negative logicD7D6D5D4D3D2D1D0VY8VY7VY6VY5VY4VY3VY2VY1O: positive/negative logic0: positive logic, valid in the closed state/invalid in the open state 1: negative logic, invalid in the closed state/valid in the open stateD7D6D5D4D3D2D1D0Control options of virtual output terminalD7D6D5D4D3D2D1D0Control options of virtual output terminalD7D6D5D4D3D2D1D0Control options of virtual output terminal0.000~30.000.000.000.00VY1 valid delay time0.000~30.000.000.000.00VY2 valid delay time0.000~30.000.000.00VY3 valid delay time0.000~30.000.000.00VY3 valid delay time0.000~30.000.00VY4 valid delay time0.000~30.000.00VY4 valid delay time0.000~30.00VY4 valid delay time0.000~30.00	function optionsVY5 virtual output function optionsImage: Second Sec	Image: Second state state second state second

User Manual of EM730 Series Inverter

F17.36	VY4 invalid delay time	0.000	~30.0	00						s	0.000	•
F17 37	Virtual input	VX8	VX7	VX6	VX5	VX4	VX3	VX2	VX1		000	
F17.37	terminal status	0: inv 1: val									00000	×
F17.38	Virtual output	VY8	VY7	VY6	VY5	VY4	VY3	VY2	VY1		00000	×
117.30	terminal status	0: inv 1: val									00000	
F18	Monitoring param	eter gi	oup									
F18.00	Output frequency	0.00 t	o upp	er frec	quency	/ limit				Hz	XXX	×
F18.01	Set frequency	0.00 t	o may	kimum	ı frequ	lency	F00.1	6		Hz	XXX	×
F18.03	Estimate feedback frequency	0.00 t	o upp	er frec	quency	/ limit				Hz	XXX	×
F18.04	Output torque	-200.	$0 \sim 20$	0.0						%	XXX	×
F18.05	Torque setting	-200.	$0 \sim 20$	0.0						%	XXX	×
F18.06	Output current	kW)		.00 (ra						A	XXX	×
F18.07	Output current percentage	0.0~3 inver		(100.0	= the	rated	currer	nt of	-	%	0	×
F18.08	Output voltage	0.0~	690.0							v	XXX	×
F18.09	DC bus voltage	0~12	200							v	XXX	×
F18.10	Simple PLC running times	0~1	0000								XXX	×
F18.11	Simple PLC operation stage	1~1:	5								XXX	×
F18.12	PLC running time at the current stage	0.0~	6000.	0							XXX	×

User Manual of EM730 Series Inverter

F18.14	Load rate	0~65535					rpm	XXX	×
F18.15	UP/DOWN offset frequency	0.00 to 2	* Maxim	um freque	ency F00.	16	Hz	XXX	×
F18.16	PID setting	0.0 to PI	D maximı	ım range				XXX	×
F18.17	PID feedback	0.0 to PI	0.0 to PID maximum range						×
F18.18	Power meter: MWh	0~65535)~65535						×
F18.19	Watt-hour meter: kWh	0.0 ~ 999	9.9				kWh	XXX	×
F18.20	Output power	-650.00~	650.00				kW	XXX	×
F18.21	Output power factor	-1.000 ~	1.000					XXX	×
F18.22	Digital input	X5	X4	X3	X2	X1		XXX	×
F10.22	terminal status 1	0/1	0/1	0/1	0/1	0/1		ллл	
	Digital input	*	AI2	AI1	*	*			
F18.23	terminal status 2	*	0/1	0/1	*	0/1		XXX	×
E10.05	Output terminal	*	*	R1	*	Y1			
F18.25	state	*	*	0/1	*	0/1		XXX	×
F18.26	AI1	0.0~100.	0			1	%	XXX	×
F18.27	AI2	0.0~100.	0				%	XXX	×
F18.31	High-frequency pulse input frequency: kHz	0.00~100).00				kHz	XXX	×
F18.32	High-frequency pulse input frequency: Hz	0~65535					Hz	XXX	×

User Manual of EM730 Series Inverter

F18.33	Count value	0~65535		XXX	×
F18.34	Actual length	0~65535	m	XXX	×
F18.35	Remaining time of regular running	0.0 ~ 6500.0	min	XXX	×
F18.36	Rotor position of synchronous motor	0.0~359.9°		XXX	×
F18.39	VF separation target voltage	0~690	v	XXX	×
F18.40	VF separation output voltage	0~690	v	XXX	×
F18.45	Speed setting	0~65535	rpm	XXX	×
F18.46	Output frequency symbol	0~65535		XXX	×
F18.51	PID output	-100.0 ~ 100.0	%		×
F18.60	Inverter temperature	-40 to 200	°C	0	×
F18.67	Saved electric energy (MWH)	cumulative energy saving MWH	0~ 655 35	MWh	×
F18.68	Saved electric energy (KWH)	cumulative energy saving KWH	0.0 ~ 9999. 9	kWh	×
F18.69	Saved electric charge (1,000 yuan)	high cumulative cost saving (*1000)	0~ 655 35		×
F18.70	Saved electric charge (yuan)	low cumulative cost saving	0.0 ~ 9999. 9		×
F18.71	Power-frequency power consumption MWh	power-frequency power consumption MWH	0~ 655 35	MWh	×
F18.72	Power-frequency power consumption KWh	power-frequency power consumption KWH	0.0 ~ 9999.	kWh	×

			9		
F19	Protection record	group	I		
F19.00	Category of last protection	0: no protection E01: output short circuit protection E02: instantaneous overcurrent E04: steady-state overcurrent E05: overvoltage E06: undervoltage E07: input phase loss E08: output phase loss E09: inverter overload E10: inverter overheat protection E11: parameter setting conflict E13: motor overload E14: external protection E15: inverter memory protection E16: communication abnormality E17: temperature sensor abnormality E18: abnormal disconnection of soft start relay E19: current detection circuit abnormality E20: stall protection E21: PID feedback disconnection E22: reserved E24: parameter identification abnormality E25: reserved E26: load loss protection E27: up to the cumulative power-on time E28: up to the cumulative running time E43: material cutoff protection E44: cable protection E57: overpressure in pipeline network E58: under-pressure in pipeline network E58: under-pressure in pipeline network E76: short-circuit protection to ground		0	×
F19.01	Output frequency in protection	0.00 to upper frequency limit	Hz	0.00	×
F19.02	Output current in protection	0.00 to 650.00 (rated power of motor: \leq 75 kW) 0.0 to 6500.0 (rated power of motor: > 75 kW)	A	0.00	×

User Manual of EM730 Series Inverter

F19.03	Bus voltage in protection	0~1200	v	0	×
F19.04	Operating status in protection	0: not running 1: forward acceleration 2: reverse acceleration 3: forward deceleration 4: reverse deceleration 5: constant speed in forward running 6: reverse constant speed in reverse running		0	×
F19.05	Working time in protection		h	0	×
F19.06	Category of previous protection	same as F19.00 parameter description		0	×
F19.07	Output frequency in protection		Hz	0.00	×
F19.08	Output current in protection		A	0.00	×
F19.09	Bus voltage in protection		v	0	×
F19.10	Operating status in protection	same as F19.04 parameter description		0	×
F19.11	Working time in protection		h	0	×
F19.12	Category of two previous protections	same as F19.00 parameter description		0	×
F19.13	Output frequency in protection		Hz	0.00	×
F19.14	Output current in protection		A	0.00	×
F19.15	Bus voltage in protection		v	0	×
F19.16	Operating status in protection	same as F19.04 parameter description		0	×
F19.17	Working time in protection		h	0	×
F27	Winding/unwindin	g application macro parameter group			

User Manual of EM730 Series Inverter

	inual of Ewi750 Series				
F27.00	Application macro	0: winding mode 1: unwinding mode 2: wire drawing mode 3: straight wire drawing machine mode		0	0
F27.01	Feedforward gain action channel	0: feedforward gain * set source B 1: feedforward gain * set source A 2: feedforward gain * 10V		1	0
F27.02	Feedforward gain input mode	0: no change in feedforward gain 1: 0.00 to upper limit of feedforward gain 2: - upper limit of feedforward gain to + upper limit of feedforward gain		1	0
F27.03	Feedforward control	Ones place: feedforward reset option 0: automatic reset 1: terminal reset Tens place: feedforward power-off stop option 0: save after power failure 1: not save after power failure Hundreds place: options of continuous feedforward calculation 0: not calculate 1: calculate		10	0
F27.04	Upper limit of feedforward gain	0.00~500.00	%	500.00	0
F27.05	Initial feedforward gain	0.00~500.00	%	50.00	•
F27.06	Feedforward gain filter time	0~1000	ms	0	•
F27.07	Feedforward range	0.00 to feedforward range 1	%	4.00	•
F27.08	Feedforward range	feedforward range 0 to feedforward range 2	%	12.00	•
F27.09	Feedforward range 2	feedforward range 1 to feedforward range 3	%	23.00	•
F27.10	Feedforward range 3	feedforward range 2 to feedforward range 4	%	37.00	•
F27.11	Feedforward range	feedforward range 3 to feedforward range 5	%	52.00	•
F27.12	Feedforward range 5	feedforward range 4 to 100.00	%	72.00	•

User Manual of EM730 Series Inverter

-					
F27.13	Soft start increment	0.00 ~ 50.00	%/S	0.60	•
F27.14	Feedforward increment 1	0.00 ~ 50.00	%/S	0.11	•
F27.15	Feedforward increment 2	0.00 ~ 50.00	%/S	0.30	•
F27.16	Feedforward increment 3	0.00 ~ 50.00	%/S	0.75	•
F27.17	Feedforward increment 4	0.00 ~ 50.00	%/S	1.55	•
F27.18	Feedforward increment 5	0.00 ~ 50.00	%/S	4.00	•
F27.19	Feedforward increment 6	0.00 ~ 50.00	%/S	11.00	•
F27.20	Material cutoff control mode	Ones place: disconnection detection mode 0: automatic detection 1: external signal Tens place: material cutoff detection control 0: detect when the output is greater than the lower limit of material cutoff detection 1: no detection Hundreds place: material cutoff handling mode 0: protection of terminal action only 1: delayed stop and trip protection 2: material cutoff protection 3: automatic reset after protection shutdown 4: material cutoff detection terminal output only (straight wire drawing machine) 5: automatic reset of cutoff detection terminal (straight wire drawing machine) Thousands place: brake mode 0: mode 0 1: mode 1 Myriabit: reverse unwinding mode 0: no speed limit 1: reverse speed limit by F27.24		01201	0
F27.21	Material cutoff detection delay	0.0~10.0	S	6.0	•
F27.22	Lower limit of material cutoff	0.00 ~ 60.00	Hz	5.00	•

User Manual of EM730 Series Inverter

			-		_
	detection after parking				
F27.23	Time of continuous running after material cutoff	0.0 ~ 60.0	S	10.0	•
F27.24	Frequency of continuous running after material cutoff	0.00~Fmax	Hz	5.00	•
F27.25	Brake signal output frequency	0.00~FUP	Hz	2.50	•
F27.26	Braking signal duration	0.0~100.0	S	5.0	•
F27.27	Minimum frequency of wiring detection	0.00~20.00	Hz	10.00	•
F27.28	Judgment time for invalid cable signal	0.1 ~ 20.0	S	10.0	•
F27.29	Judgment time for valid cable signal	0.1 ~ 20.0	S	2.0	•
F27.30	Filtering time for material cutoff detection	1~100	ms	5	•
F27.36	Current value of feedforward gain	-500.0~500.0	%		×
F45	Modbus free mapp	ing parameter group			
F45.00	Modbus communication mapping	0: invalid 1: valid	-	0	•
F45.01	Source address 1	0~65535	-	0	•
F45.02	Destination address	0~65535	-	0	•
F45.03	Mapping coefficient 1	0.00~100.00	-	1.00	•
F45.04	Source address 2	0~65535	-	0	•

User Manual of EM730 Series Inverter

0001 1110	indui of Entrys o Serie	,			
F45.05	Destination address 2	0~65535	-	0	•
F45.06	Mapping coefficient 2	0.00~100.00	-	1.00	•
F45.07	Source address 3	0~65535	-	0	•
F45.08	Destination address 3	0~65535	-	0	•
F45.09	Mapping coefficient 3	0.00~100.00	-	1.00	•
F45.10	Source address 4	0~65535	-	0	•
F45.11	Destination address	0~65535	-	0	•
F45.12	Mapping coefficient 4	0.00~100.00	-	1.00	•
F45.13	Source address 5	0~65535	-	0	•
F45.14	Destination address 5	0~65535	-	0	•
F45.15	Mapping coefficient 5	0.00~100.00	-	1.00	•
F45.16	Source address 6	0~65535	-	0	•
F45.17	Destination address 6	0~65535	-	0	•
F45.18	Mapping coefficient 6	0.00~100.00	-	1.00	•
F45.19	Source address 7	0~65535	-	0	•
F45.20	Destination address 7	0~65535	-	0	•
	•				

User Manual of EM730 Series Inverter

F45.21	Mapping coefficient 7	0.00~100.00	-	1.00	•
F45.22	Source address 8	0~65535	-	0	•
F45.23	Destination address 8	0~65535	-	0	•
F45.24	Mapping coefficient 8	0.00~100.00	-	1.00	•
F45.25	Source address 9	0~65535	-	0	•
F45.26	Destination address 9	0~65535	-	0	•
F45.27	Mapping coefficient 9	0.00~100.00	-	1.00	•
F45.28	Source address 10	0~65535	-	0	•
F45.29	Destination address 10	0~65535	-	0	•
F45.30	Mapping coefficient 10	0.00~100.00	-	1.00	•
F45.31	Source address 11	0~65535	-	0	•
F45.32	Destination address	0~65535	-	0	•
F45.33	Mapping coefficient 11	0.00~100.00	-	1.00	•
F45.34	Source address 12	0~65535	-	0	•
F45.35	Destination address 12	0~65535	-	0	•
F45.36	Mapping coefficient 12	0.00~100.00	-	1.00	•

User Manual of EM730 Series Inverter

F45.37	Source address 13	0~65535	-	0	•
F45.38	Destination address 13	0~65535	-	0	•
F45.39	Mapping coefficient 13	0.00~100.00	-	1.00	•
F45.40	Source address 14	0~65535	-	0	•
F45.41	Destination address 14	0~65535	-	0	•
F45.42	Mapping coefficient 14	0.00~100.00	-	1.00	•
F45.43	Source address 15	0~65535	-	0	•
F45.44	Destination address 15	0~65535	-	0	•
F45.45	Mapping coefficient 15	0.00~100.00	-	1.00	•
F45.46	Source address 16	0~65535	-	0	•
F45.47	Destination address 16	0~65535	-	0	•
F45.48	Mapping coefficient 16	0.00~100.00	-	1.00	•
F45.49	Source address 17	0~65535	-	0	•
F45.50	Destination address 17	0~65535	-	0	•
F45.51	Mapping coefficient 17	0.00~100.00	-	1.00	•
F45.52	Source address 18	0~65535	-	0	•

User Manual of EM730 Series Inverter

0001 1114	indal of Elvi / 50 Series				
F45.53	Destination address 18	0~65535	-	0	•
F45.54	Mapping coefficient 18	0.00~100.00	-	1.00	•
F45.55	Source address 19	0~65535	-	0	•
F45.56	Destination address 19	0~65535	-	0	•
F45.57	Mapping coefficient 19	0.00~100.00	-	1.00	•
F45.58	Source address 20	0~65535	-	0	•
F45.59	Destination address 20	0~65535	-	0	•
F45.60	Mapping coefficient 20	0.00~100.00	-	1.00	•
F45.61	Source address 21	0~65535	-	0	•
F45.62	Destination address 21	0~65535	-	0	•
F45.63	Mapping coefficient 21	0.00~100.00	-	1.00	•
F45.64	Source address 22	0~65535	-	0	•
F45.65	Destination address 22	0~65535	-	0	•
F45.66	Mapping coefficient 22	0.00~100.00	-	1.00	•
F45.67	Source address 23	0~65535	-	0	•
F45.68	Destination address 23	0~65535	-	0	•

User Manual of EM730 Series Inverter

-					
F45.69	Mapping coefficient 23	0.00~100.00	-	1.00	•
F45.70	Source address 24	0~65535	-	0	•
F45.71	Destination address 24	0~65535	-	0	•
F45.72	Mapping coefficient 24	0.00~100.00	-	1.00	•
F45.73	Source address 25	0~65535	-	0	•
F45.74	Destination address 25	0~65535	-	0	•
F45.75	Mapping coefficient 25	0.00~100.00	-	1.00	•
F45.76	Source address 26	0~65535	-	0	•
F45.77	Destination address 26	0~65535	-	0	•
F45.78	Mapping coefficient 26	0.00~100.00	-	1.00	•
F45.79	Source address 27	0~65535	-	0	•
F45.80	Destination address 27	0~65535	-	0	•
F45.81	Mapping coefficient 27	0.00~100.00	-	1.00	•
F45.82	Source address 28	0~65535	-	0	•
F45.83	Destination address 28	0~65535	-	0	•
F45.84	Mapping coefficient 28	0.00~100.00	-	1.00	•

User Manual of EM730 Series Inverter

F45.85	Source address 29	0~65535	-	0	•
F45.86	Destination address 29	0~65535	-	0	•
F45.87	Mapping coefficient 29	0.00~100.00	-	1.00	•
F45.88	Source address 30	0~65535	-	0	•
F45.89	Destination address 30	0~65535	-	0	•
F45.90	Mapping coefficient 30	0.00~100.00	-	1.00	•